DOI QR코드

DOI QR Code

High conservative nonlinear vibration equations by means of energy balance method

  • Bayat, Mahmoud ;
  • Pakar, Iman ;
  • Bayat, Mahdi
  • Received : 2015.10.09
  • Accepted : 2016.06.22
  • Published : 2016.07.25

Abstract

This paper presents He's Energy Balance Method (EBM) for solving nonlinear oscillatory differential equations. Three strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with numerical solutions using Runge-Kutta's algorithm. The effects of different important parameters on the nonlinear response of the systems are studied. The results show the presented method is potentially to solve high nonlinear vibration equations.

Keywords

Energy Balance Method (EBM);Runge- Kutta's Method (RKM);nonlinear vibrations

References

  1. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
  2. Andrianov, I.V., Awrejcewicz, J. and Manevitch, L.I. (2004), Asymptotical Mechanics of thin-walled Structures, Springer - Verlag Berlin Heidelberg, Germany.
  3. Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
  4. Bayat, M. and Pakar, I. (2013a), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  5. Bayat, M. and Pakar, I. (2012a), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  6. Bayat, M., Pakar, I. and Domaiirry, G. (2012b), "Recent developments of Some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Latin Am. J. Solid. Struct., 9(2), 145-234 .
  7. Bayat, M., Pakar, I. and Cveticanin, L. (2014d), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities : an analytical approach", Mechanism Machine Theory, 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
  8. Bayat, M., Pakar, I. and Cveticanin, L. (2014e), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
  9. Bayat, M. and Pakar, I. (2013c), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
  10. Bayat, M., Pakar, I. and Bayat, M. (2013b), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
  11. Bayat, M. and Abdollahzadeh, G. (2011a), "On the effect of the near field records on the steel braced frames equipped with energy dissipating devices", Latin Am. J. Solid. Struct., 8(4), 429-443. https://doi.org/10.1590/S1679-78252011000400004
  12. Bayat, M. and Abdollahzadeh, G. (2011b), "Analysis of the steel braced frames equipped with ADAS devices under the far field records", Latin Am. J. Solid. Struct., 8(2), 163-181. https://doi.org/10.1590/S1679-78252011000200004
  13. Bayat, M., Bayat, M. and Pakar, I. (2014f), "Nonlinear vibration of an electrostatically actuated microbeam", Latin Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
  14. Bayat, M., Bayat, M. and Pakar, I. (2014a), "The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading", Steel Compos. Struct., 17(1), 123-131. https://doi.org/10.12989/scs.2014.17.1.123
  15. Bayat, M., Bayat, M. and Pakar, I. (2014c), "Forced nonlinear vibration by means of two approximate analytical solutions", Struct. Eng. Mech., 50(6), 853-862. https://doi.org/10.12989/sem.2014.50.6.853
  16. Bayat, M., Bayat, M. and Pakar, I. (2014g), "Accurate analytical solutions for nonlinear oscillators with discontinuous", Struct. Eng. Mech., 51(2), 349-360. https://doi.org/10.12989/sem.2014.51.2.349
  17. Bayat, M., Pakar, I. and Bayat, M. (2013b), "On the large amplitude free vibrations of axially loaded Euler- Bernoulli beams", Steel Compos. Struct., 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073
  18. Bayat, M., Pakar, I. and Bayat, M. (2014b), "An accurate novel method for solving nonlinear mechanical systems", Struct. Eng. Mech., 51(3), 519-530. https://doi.org/10.12989/sem.2014.51.3.519
  19. Bayat, M., Pakar, I. and Emadi, A. (2013a), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823
  20. Bor-Lih, K. and Cheng-Ying, L. (2009), "Application of the differential transformation method to the solution of a damped system with high nonlinearity", Nonlin. Anal., 70(4), 1732-1737. https://doi.org/10.1016/j.na.2008.02.056
  21. Cunedioglu ,Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., 51(1), 111-130. https://doi.org/10.12989/sem.2014.51.1.111
  22. Cveticanin, L. (2012), "A review on dynamics of mass variable systems", J. Serbian Soc. Comput. Mech., 6(1), 56-74.
  23. Cveticanin, L. (2015), "A solution procedure based on the Ateb function for a two-degree-of-freedom oscillator", J. Sound Vib., 346, 298-313. https://doi.org/10.1016/j.jsv.2015.02.016
  24. Dehghan, M. and Tatari, M. (2008), "Identifying an unknown function in a parabolic equation with over specified data via He's variational iteration method", Chaos, Soliton. Fract., 36(1), 157-166. https://doi.org/10.1016/j.chaos.2006.06.023
  25. Evakin, A.Yu. and Kalamkarov, A. (2001), "Analysis of large deflection equilibrium state of composite shells of revolution. Part 1. General model and singular perturbation analysis", Int. J. Solid. Struct., 38(50- 51), 8961-8974. https://doi.org/10.1016/S0020-7683(01)00184-6
  26. Filippov, S.B. (1999), Theory of conjugated and reinforced shells, St. Petersburg state university. (in Russian)
  27. Filobello-Nino, U.H., Vazquez-Leal, B., Benhammouda, A., Perez-Sesma, V., Jimenez-Fernandez, J., Cervantes-Perez, A., Sarmiento-Reyes, J., Huerta-Chua, L., Morales-Mendoza and M., Gonzalez-Lee (2015), "Analytical solutions for systems of singular partial differential-algebraic equations", Discrete Dyn. Nat. Soc., Article ID 752523, 9 pages.
  28. Grigolyuk, E.I. and Kabanov, V.V. (1987), Stability of shells, Nauka, Moscow. (in Russian)
  29. Han, S. (1965), "On the free vibration of a beams on a nonlinear elastic foundation", Trans. ASME J. Appl. Mech., 32(2), 445-447. https://doi.org/10.1115/1.3625828
  30. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos, Solitons Fract., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  31. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  32. He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
  33. He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlin. Sci. Numer. Simul., 9(2), 211-212.
  34. Jamshidi, N. and Ganji, D.D. (2010), "Application of energy balance method and variational iteration method to an oscillation of a mass attached to a stretched elastic wire", Curr. Appl. Phys., 10(2), 484-486. https://doi.org/10.1016/j.cap.2009.07.004
  35. Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Curr. Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
  36. Nayfeh.A.H. (1973), Perturbation methods, volume 6, Wiley Online Library.
  37. Odibat, Z., Momani, S. and Suat Erturk, V. (2008), "Generalized differential transform method: application to differential equations of fractional order", Appl. Math. Comput., 197(2), 467-477.
  38. Pakar, I. and Bayat, M. (2013a), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  39. Pakar, I. and Bayat, M. (2013b), "An analytical study of nonlinear vibrations of buckled Euler Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
  40. Pakar, I., Bayat, M. and Bayat, M. (2011), "Analytical evaluation of the nonlinear vibration of a solid circular sector object", Int. J. Phys. Sci., 6(30), 6861-6866.
  41. Pakar, I., Bayat, M. and Bayat, M. (2014a), "Nonlinear vibration of thin circular sector cylinder: An analytical approach", Steel Compos. Struct., 17(1), 133-143. https://doi.org/10.12989/scs.2014.17.1.133
  42. Pakar, I., Bayat, M. and Bayat, M. (2014b), "Accurate periodic solution for nonlinear vibration of thick circular sector slab", Steel Compos. Struct., 16(5), 521-531. https://doi.org/10.12989/scs.2014.16.5.521
  43. Radomirovic, D. and Kovacic, I. (2015), "An equivalent spring for nonlinear springs in series", Eur. J. Phys., 36(5), 055004. https://doi.org/10.1088/0143-0807/36/5/055004
  44. Rajasekaran, S. (2013), "Free vibration of tapered arches made of axially functionally graded materials", Struct. Eng. Mech., 45(4), 569-594. https://doi.org/10.12989/sem.2013.45.4.569
  45. Shahidi, M., Bayat, M., Pakar, I. and Abdollahzadeh, G.R. (2011), "Solution of free non-linear vibration of beams", Int. J. Phys. Sci., 6(7), 1628-1634.
  46. Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
  47. Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
  48. Xu, L. (2010), "Application of Hamiltonian approach to an oscillation of a mass attached to a stretched elastic wire", Comput. Math. Appl., 15(5), 901-906.
  49. Xu, Nan and Zhang, A. (2009), "Variational approachnext term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463. https://doi.org/10.1016/j.camwa.2009.03.035
  50. Xu, R., Li, D.-X., Jiang, J.-P. and Liu, W. (2015), "Nonlinear vibration analysis of membrane SAR antenna structure adopting a vector form intrinsic finite element", J. Mech., 31(3), 269-277. https://doi.org/10.1017/jmech.2014.97
  51. Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlin. Sci. Numer. Simul., 10(10), 1361-1368.
  52. Zhifeng, L., Yunyao, Y., Feng, W., Yongsheng, Z. and Ligang, C. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48(5): 697-709. https://doi.org/10.12989/sem.2013.48.5.697