Polygonal Grain-Based Distinct Element Modelling of Mechanical Characteristics and Transverse Isotropy of Rock

다각형 입자 기반 개별요소모델을 통한 암석의 역학적 특성과 횡등방성 모사

  • Received : 2016.06.20
  • Accepted : 2016.06.27
  • Published : 2016.06.30


This study presents a methodology to reproduce the mechanical behavior of isotropic or transversely isotropic rock using the polygonal grain-based distinct element model. A numerical technique to monitor the evolution of micro-cracks during the simulation was developed in the present study, which enabled us to examine the contribution of tensile cracking and shear cracking to the progressive process of the failure. The numerical results demonstrated good agreement with general observations from rock specimens in terms of the behavior and the evolution of micro-cracks, suggesting the capability of the model to represent the mechanical behavior of rock. We also carried out a parametric study as a fundamental work to examine the relationships between the microscopic properties of the constituents and the macroscopic behavior of the model. Depending on the micro-properties, the model exhibited a variety of responses to the external load in terms of the strength and deformation characteristics. In addition, a numerical technique to reproduce the transversely isotropic rock was suggested and applied to Asan gneiss from Korea. The behavior of the numerical model was in good agreement with the results obtained in the laboratory-scale experiments of the rock.


Grain-based model (GBM);Distinct element method;Polygonal grain;Micro-parameter;Transverse isotropy


  1. Cho, J.W., Kim, H., Jeon, S., Min, K.B., 2012, Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist, Int. J. Rock Mech. Min. Sci., Vol. 50, pp. 158-169.
  2. Cho, N., Martin, C.D., Sego, D.S., 2007, A clumped particle model for rock, Int. J. Rock Mech. Min. Sci., Vol. 44, pp. 997-1010.
  3. Claesson, J., Bohloli, B., 2002, Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution, Int. J. Rock Mech. Min. Sci., Vol. 39, No. 8, pp. 991-1004.
  4. Cundall, P.A., 2001, A discontinuous future for numerical modelling in geomechanics?, Geotech. Eng., Vol. 149, No. 1, pp. 41-47.
  5. Damjanac, B., Board, M., Lin, M., Kicker, D., Leem, J., 2007, Mechanical degradation of emplacement drifts at Yucca Mountain-A modeling case study: Part II: Lithophysal rock, Int. J. Rock Mech. Min. Sci., Vol. 44, No. 3, pp. 368-399.
  6. Diederichs, M.S., 2003, Rock fracture and collapse under low confinement conditions, Rock Mech. Rock Eng., Vol. 36, pp. 339-381.
  7. Fairhurst, C., Cook, N.G.W., 1966, The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface, paper presented at 1st Congress, Int. Soc. of Rock Mech., Lisbon.
  8. Fonseka, G.M., Murrell, S.A.F., Barnes, P., 1985, Scanning electron microscope and acoustic emission studies of crack development in rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 22, pp. 273-289.
  9. Goodman, R.E., 1989, Introduction to rock mechanics, 2nd ed. John Wiley & Sons.
  10. Hallbauer, D.K., Wagner, H.N.G.W., Cook, N.G.W., 1973, Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 10, pp. 713-726.
  11. Hoek, E., Martin, C.D., 2014, Fracture initiation and propagation in intact rock-a review, J. Rock Mech. Geotech. Eng., Vol. 6, No. 4, pp. 287-300.
  12. Itasca Consulting Group Inc., 2014, UDEC (Universal Distinct Element Code) version 6.0. Minneapolis: Itasca.
  13. Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W., 2007, Fundamentals of rock mechanics, 4th ed, Wiley-Blackwell.
  14. Asadi, M.S., Rasouli, V., Barla, G., 2012, A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures, Rock Mech. Rock Eng., Vol. 45, No. 5, pp. 649-675.
  15. Brace, W.F., Paulding, B.W., Scholz, C., 1966, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., Vol. 71, No. 16, pp. 3939-3953.
  16. Kemeny, J.M., 1991, A model for non-linear rock deformation under compression due to sub-critical crack growth, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 28, No. 6, pp. 459-467.
  17. Kranz, R.L., 1983, Microcracks in rocks: a review, Tectonophysics, Vol. 100, pp. 449-480.
  18. Lan, H., Martin, C.D., Hu, B., 2010, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading, J. Geophys. Res., Vol. 115, B01202.
  19. Lockner, D., 1993, The role of acoustic emission in the study of rock fracture, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 30, No. 7, pp. 883-899.
  20. Martin, C.D., 2014, The impact of brittle behaviour of rocks on tunnel excavation design, In: Proceedings of EUROCK2014, Vigo, pp. 51-62.
  21. Martin, C.D., Chandler, N.A., 1994, The progressive fracture of Lac du Bonnet granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 31, pp. 643-659.
  22. Park, B., Min, K.B., 2015, Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock, Int. J. Rock Mech. Min. Sci., Vol. 76, pp. 243-255.
  23. Park, J.W., Lee, Y.S., Park, C., Park, E.S., 2014, Numerical simulation for characteristics of rock strength and deformation using grain-based distinct element model, Tunnel & Underground Space, Vol. 24, No. 3, pp. 243-254.
  24. Park, J.W., Song, J.J., 2009, Numerical simulation of a direct shear test on a rock joint using a bonded-particle model, Int. J. Rock Mech. Min. Sci., Vol. 46, pp. 131-1328.
  25. Paterson, M.S., Wong, T.F., 2005, Experimental rock deformation -the brittle field, 2nd edition, Berlin: Springer.
  26. Potyondy, D.O., 2010, A grain-based model for rock: approaching the true microstructure, In: Proceedings of Bergmekanikk I Norden. Kongsberg, Norway.
  27. Potyondy, D.O., 2012, A flat-jointed bonded-particle material for hard rock, In: Proceedings of 46th U.S. Rock mechanics/geomechanics symposium, Chicago, USA, ARMA 12-501.
  28. Potyondy, D.O., 2013, PFC3D flat joint contact model version1, Itasca Consulting Group, Minneapolis, Technical Memorandum ICG7234-L.
  29. Potyondy, D.O., 2015, The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions. Geosystem Eng., Vol. 18, pp. 1-28.
  30. Potyondy, D.O., Cundall, P.A., 2004, A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., Vol. 41, No. 8, pp. 1329-1364.
  31. Potyondy, D.O., Hazzard, J.F., 2008, Effects of stress and induced cracking on the static and dynamic moduli of rock, In: Proceedings of First International FLAC/DEM Symposium, Minneapolis, USA, pp. 147-156.
  32. Schopfer, M.P.J., Abe, S., Childs, C., Walsh, J.J., 2009, The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling, Int. J. Rock Mech. Min. Sci., Vol. 46, pp. 250-261.
  33. Shin, S.W., 2010, Excavation Disturbed Zone in Lac du Bonnet Granite, PhD thesis, Univeristy of Alberta, Canada.
  34. Simmons, G., Richter, D., 1976, Microcracks in rock, In: The physics and chemistry of minerals and rocks, New York: Wiley, pp. 105-137.
  35. Tapponier, P., Brace, W.F., 1976, Development of stress induced microcracks in Westerly granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Vol. 13, pp. 103-112.
  36. Wanne, T.S., Young, R.P., 2008, Bonded-particle modeling of thermally fractured granite, Int. J. Rock Mech, Min. Sci., Vol. 45, pp. 789-799.
  37. Yoon, J.S., Zimmermann, G., Zang, A., Stephansson, O., 2015, Discrete element modeling of fluid injectioninduced seismicity and activation of nearby fault 1, Can. Geotech. J., Vol. 52, No. 10, pp. 1457-1465.
  38. Zhang, F., Huang, H., Damjanac, B., 2012, DEM/pore network modeling of fluid injection into granular media, In: Proceedings of 46th U.S. Rock mechanics/geomechanics symposium, Chicago, USA, ARMA 12-621.


Grant : 심부 지오시스템 특성 평가기술 개발

Supported by : 한국지질자원연구원