A novel approach in analyzing agriculture and food systems: Review of modeling and its applications

DOI QR코드

DOI QR Code

Kim, Do-Gyun;Cho, Byoung-Kwan;Lee, Wang-Hee

  • 투고 : 2016.04.27
  • 심사 : 2016.06.07
  • 발행 : 2016.06.30

초록

For the past decades, advances in computational devices have propelled mathematical modeling to become an effective tool for solving the black box of complex biological systems because of its prominent analytical power and comprehensive insight. Nevertheless, modeling is still limitedly used in the fields of agriculture and food which generally concentrate on producing experimental data rather than processing them. This study, hence, intends to introduce modeling in terms of its procedure types of structure, formulation, analyses, and software, with reviews of current notable studies from micro to macro scales so as to propose the modeling technique as a novel approach in discerning conundrums in agriculture and food systems. We expect this review to provide an eligible source for researchers who are willing to apply modeling techniques into the unexplored fields related to bio-systems that comprehensively include biology, nutrition, agriculture, food, animal science, and ecology.

키워드

bio-systems;mathematical modeling;model formulation;modeling procedure;modeling software;types of modeling

참고문헌

  1. Ambrose A, Lohumi S, Lee WH, Cho BK. 2016. Comparative nondestructive measurement of corn seed viability using Fourier transform near-infrared (FT-NIR) and Raman spectroscopy. Sensors and Actuators B: Chemical 224:500-506. https://doi.org/10.1016/j.snb.2015.10.082
  2. Ayati BP, Edwards CM, Webb GF, Wikswo JP. 2010. A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biology Direct 5:28. https://doi.org/10.1186/1745-6150-5-28
  3. Baek IS, Kim MS, Lee H, Lee WH, Cho BK. 2014. Optimal fluorescence waveband determination for detecting defective cherry tomatoes using a fluorescence excitation-emission matrix. Sensors (Basel) 14:21483-21496. https://doi.org/10.3390/s141121483
  4. Baghalian K, Hajirezaei MR, Schreiber F. 2014. Plant Metabolic Modeling: Achieving New Insight into Metabolism and Metabolic Engineering. The Plant Cell 26:3847-3866. https://doi.org/10.1105/tpc.114.130328
  5. Barthus RC, Poppi RJ. 2001. Determination of the total unsaturation in vegetable oils by Fourier transform Raman spectroscopy and multivariate calibration. Vibrational Spectroscopy 26:99-105. https://doi.org/10.1016/S0924-2031(01)00107-2
  6. Bastianelli D, Sauvant D, Rerat A. 1996. Mathematical modeling of digestion and nutrient absorption in pigs. Journal of Animal Science 74:1873-1887. https://doi.org/10.2527/1996.7481873x
  7. Beukema KJ, Bruin S, Schenk J. 1982. Heat and mass transfer during cooling and storage of agricultural products. Chemical Engineering Science 37:291-298. https://doi.org/10.1016/0009-2509(82)80164-4
  8. Chaouiya C. 2007. Petri net modelling of biological networks. Briefings in Bioinformatics 8:210-219. https://doi.org/10.1093/bib/bbm029
  9. Chellaboina V, Bhat SP, Haddad WM, Bernstein DS. 2009. Modeling and analysis of mass-action kinetics. IEEE Control Systems 29:60-78. https://doi.org/10.1109/MCS.2009.932926
  10. Cho B, Kim MS, Chao K, Lawrence K, Park B, Kim K. 2009. Detection of Fecal Residue on Poultry Carcasses by Laser-Induced Fluorescence Imaging. Journal of Food Science 74:E154-E159. https://doi.org/10.1111/j.1750-3841.2009.01103.x
  11. Claussen JC, Hengenius JB, Wickner MM, Fisher TS, Umulis DM, Porterfield DM. 2011. Effects of Carbon Nanotube-Tethered Nanosphere Density on Amperometric Biosensing: Simulation and Experiment. The Journal of Physical Chemistry C 115:20896-20904. https://doi.org/10.1021/jp205569z
  12. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. 2007. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences of the United States of America 104:1777-1782. https://doi.org/10.1073/pnas.0610772104
  13. ElMasry G, Wang N, Vigneault C, Qiao J, ElSayed A. 2008. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT - Food Science and Technology 41:337-345. https://doi.org/10.1016/j.lwt.2007.02.022
  14. Famili I, Forster J, Nielsen J, Palsson BO. 2003. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proceedings of the National Academy of Sciences of the United States of America 100:13134-13139. https://doi.org/10.1073/pnas.2235812100
  15. Faraji M, Fonseca LL, Escamilla-Trevino L, Dixon RA, Voit EO. 2015. Computational inference of the structure and regulation of the lignin pathway in Panicum virgatum. Biotechnology for Biofuels 8:151. https://doi.org/10.1186/s13068-015-0334-8
  16. Farooq M, Balachandar R, Wulfsohn D, Wolf TM. 2001. Agricultural sprays in cross-flow and drift. Journal of Agricultural Engineering Research 78:347-358. https://doi.org/10.1006/jaer.2000.0660
  17. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO. 2009. Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology 7:129-143. https://doi.org/10.1038/nrmicro1949
  18. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO. 2007. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Molecular Systems Biology 3:121.
  19. Finegood DT, Scaglia L, Bonner-Weir S. 1995. Dynamics of beta-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44:249-256. https://doi.org/10.2337/diab.44.3.249
  20. Flora JRV, McAnally AS, Petrides D. 1998. Treatment plant instructional modules based on SuperPro Designer(R) v.2.7. Environmental Modelling and Software 14:69-80. https://doi.org/10.1016/S1364-8152(98)00059-0
  21. Fryer PJ, Robbins PT. 2005. Heat transfer in food processing: ensuring product quality and safety. Applied Thermal Engineering 25:2499-2510. https://doi.org/10.1016/j.applthermaleng.2004.11.021
  22. Gardner TS, Cantor CR, Collins JJ. 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403:339-342. https://doi.org/10.1038/35002131
  23. Genrich H, Küffner R, Voss K. 2001. Executable Petri net models for the analysis of metabolic pathways. International Journal on Software Tools for Technology Transfer 3:394-404.
  24. Guo Z, Huang W, Peng Y, Chen Q, Ouyang Q, Zhao J. 2016. Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple. Postharvest Biology and Technology 115:81-90. https://doi.org/10.1016/j.postharvbio.2015.12.027
  25. Haefner JW. 1996. Modeling biological systems : principles and applications. Chapman & Hall, New York.
  26. Hambli R. 2014. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Frontiers in Bioengineering and Biotechnology 2:6.
  27. Hanigan MD, Baldwin RL. 1994. A mechanistic model of mammary gland metabolism in the lactating cow. Agricultural Systems 45: 369-419. https://doi.org/10.1016/0308-521X(94)90132-Y
  28. Heethaar RM, Denier van der Gon JJ, Meijler FL. 1973. Mathematical model of A-V conduction in the rat heart. Cardiovascular Research 7:105-114. https://doi.org/10.1093/cvr/7.1.105
  29. Hill KM, Braun M, Kern M, Martin BR, Navalta JW, Sedlock DA, McCabe L, McCabe GP, Peacock M, Weaver CM. 2008. Predictors of Calcium Retention in Adolescent Boys. The Journal of Clinical Endocrinology and Metabolism 93:4743-4748. https://doi.org/10.1210/jc.2008-0957
  30. Kermack WO, McKendrick AG. 1927. Contributions to the mathematical theory of epidemics-I. Bulletin of Mathematical Biology 53: 33-55.
  31. Kim HU, Kim TY, Lee SY. 2008. Metabolic flux analysis and metabolic engineering of microorganisms. Molecular BioSystems 4:113-120. https://doi.org/10.1039/B712395G
  32. Kim JH, Wang R, Lee WH, Park CS, Lee S, Yoo SH. 2011. One-Pot Synthesis of Cycloamyloses from Sucrose by Dual Enzyme Treatment: Combined Reaction of Amylosucrase and 4-$\alpha$-Glucanotransferase. Journal of Agricultural and Food Chemistry 59:5044-5051. https://doi.org/10.1021/jf2002238
  33. Kitano H. 2002a. Systems biology: a brief overview. Science 295:1662-1664. https://doi.org/10.1126/science.1069492
  34. Kitano H. 2002b. Computational systems biology. Nature 420:206-210. https://doi.org/10.1038/nature01254
  35. Komarova SV. 2005. Mathematical Model of Paracrine Interactions between Osteoclasts and Osteoblasts Predicts Anabolic Action of Parathyroid Hormone on Bone. Endocrinology 146:3589-3595. https://doi.org/10.1210/en.2004-1642
  36. Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM. 2003. Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33:206-215. https://doi.org/10.1016/S8756-3282(03)00157-1
  37. Kreutz C, Timmer J. 2009. Systems biology: experimental design. The FEBS Journal 276:923-942. https://doi.org/10.1111/j.1742-4658.2008.06843.x
  38. Lee DS, Burd H, Liu J, Almaas E, Wiest O, Barabasi AL, Oltvai ZN, Kapatral V. 2009. Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. Journal of Bacteriology 191:4015-4024. https://doi.org/10.1128/JB.01743-08
  39. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne J-B, Volkert TL, Fraenkel E, Gifford DK, Young, R.A., 2002. Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science 298:799-804. https://doi.org/10.1126/science.1075090
  40. Lee WH, Cho BK. 2012. Review on Application of Biosystem Modeling: Introducing 3 Model-based Approaches in Studying Ca Metabolism. Journal of Biosystems Engineering 37:258-264. https://doi.org/10.5307/JBE.2012.37.4.258
  41. Lee WH, Cho BK. 2013. Mechanistic Modeling in Biosystem Engineering: A Review on Mechanistic Models of Calcium Metabolism. Food Engineering Progress 17:48-54.
  42. Lee WH, Okos MR. 2016. Model-based analysis of IGF-1 effect on osteoblast and osteoclast regulation in bone turnover. Journal of Biological Systems 24:63-89. https://doi.org/10.1142/S0218339016500042
  43. Lee WH, Cho BK, Okos MR. 2013. A Theoretical Modeling for Suggesting Unique Mechanism of Adolescent Calcium Metabolism. Journal of Biosystems Engineering 38:129-137. https://doi.org/10.5307/JBE.2013.38.2.129
  44. Lee WH, Wastney M, Jackson G, Martin B, Weaver C. 2011. Interpretation of 41Ca data using compartmental modeling in post-menopausal women. Analytical and Bioanalytical Chemistry 399:1613-1622. https://doi.org/10.1007/s00216-010-4454-5
  45. Lee WH, Kim MS, Lee H, Delwiche SR, Bae H, Kim D-Y, Cho B-K. 2014. Hyperspectral near-infrared imaging for the detection of physical damages of pear. Journal of Food Engineering 130:1-7. https://doi.org/10.1016/j.jfoodeng.2013.12.032
  46. Lee W, McCabe GP, Martin BR, Weaver CM. 2010a. Validation of a simple isotope method for estimating true calcium fractional absorption in adolescents. Osteoporosis International 22:159-166.
  47. Lee WH, McCabe GP, Martin BR, Weaver CM. 2010b. Simple isotopic method using oral stable or radioactive tracers for estimating fractional calcium absorption in adult women. Osteoporosis International 22:1829-1834.
  48. Lee Y, Voit EO. 2010. Mathematical modeling of monolignol biosynthesis in Populus xylem. Mathematical Biosciences 228:78-89. https://doi.org/10.1016/j.mbs.2010.08.009
  49. Lee Y, Escamilla-Trevino L, Dixon RA, Voit EO. 2012. Functional analysis of metabolic channeling and regulation in lignin biosynthesis: a computational approach. PLOS Computational Biology 8:e1002769. https://doi.org/10.1371/journal.pcbi.1002769
  50. Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ. 2004. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. Journal of Theoretical Biology 229:293-309. https://doi.org/10.1016/j.jtbi.2004.03.023
  51. Lohumi S, Lee S, Lee H, Kim MS, Lee W-H, Cho B-K. 2016. Application of hyperspectral imaging for characterization of intramuscular fat distribution in beef. Infrared Physics & Technology 74:1-10. https://doi.org/10.1016/j.infrared.2015.11.004
  52. Mayor L, Sereno AM. 2004. Modelling shrinkage during convective drying of food materials: a review. Journal of Food Engineering 61:373-386. https://doi.org/10.1016/S0260-8774(03)00144-4
  53. McCloskey D, Palsson BO, Feist AM. 2013. Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Molecular Systems Biology 9:661.
  54. Mistriotis A, Bot GPA, Picuno P, Scarascia-Mugnozza G. 1997. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agricultural and Forest Meteorology 85:217-228. https://doi.org/10.1016/S0168-1923(96)02400-8
  55. Mo ML, Jamshidi N, Palsson BO. 2007. A genome-scale, constraint-based approach to systems biology of human metabolism. Molecular BioSystems 3:598-603. https://doi.org/10.1039/b705597h
  56. Nicolai BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J. 2007. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology 46:99-118. https://doi.org/10.1016/j.postharvbio.2007.06.024
  57. Orth JD, Thiele I, Palsson BO. 2010. What is flux balance analysis? Nature Biotechnology 28:245-248. https://doi.org/10.1038/nbt.1614
  58. Otero L, Sanz PD. 2003. Modelling heat transfer in high pressure food processing: a review. Innovative Food Science and Emerging Technologies 4:121-134. https://doi.org/10.1016/S1466-8564(03)00005-5
  59. Overbeek R, Larsen N, Pusch GD, D'Souza M, Jr ES, Kyrpides N, Fonstein M, Maltsev N, Selkov E. 2000. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Research 28:123-125. https://doi.org/10.1093/nar/28.1.123
  60. Pandit SV, Clark RB, Giles WR, Demir SS. 2001. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophysical Journal 81:3029-3051. https://doi.org/10.1016/S0006-3495(01)75943-7
  61. Parfitt AM, Mundy GR, Roodman GD, Hughes DE, Boyce BF. 1996. Theoretical perspective: A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. Journal of Bone and Mineral Research 11:150-159.
  62. Park JJ, Mo HH, Lee GS, Lee SE, Lee JH, Cho K. 2014. Predicting the potential geographic distribution of Thrips palmi in Korea, using the CLIMEX model. Entomological Research 44:47-57. https://doi.org/10.1111/1748-5967.12049
  63. Pereira AFC, Pontes MJC, Neto FFG, Santos SRB, Galvao RKH, Araujo MCU. 2008. NIR spectrometric determination of quality parameters in vegetable oils using iPLS and variable selection. Food Research International 41:341-348. https://doi.org/10.1016/j.foodres.2007.12.013
  64. Peterson MC, Riggs MM. 2010. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46:49-63. https://doi.org/10.1016/j.bone.2009.08.053
  65. Petrides D. 2001. Process modelling evaluates feasibility of water recycling. Filtration and Separation 38:26-31.
  66. Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR. 2010. Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. Journal of Theoretical Biology 262:306-316. https://doi.org/10.1016/j.jtbi.2009.09.021
  67. Poutsma J, Loomans AJM, Aukema B, Heijerman T. 2007. Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. BioControl 53:103-125.
  68. Poutsma J, Loomans AJM, Aukema B, Heijerman T. 2008. Predicting the potential geographical distribution of the harlequin ladybird, Harmonia axyridis, using the CLIMEX model. in From Biological Control to Invasion: the Ladybird Harmonia axyridis as a Model Species (ed. HE Roy and E Wajnberg), pp. 103-125. Springer Netherlands, Dordrecht.
  69. Raghu S, Dhileepan K, Trevino M. 2006. Response of an invasive liana to simulated herbivory: implications for its biological control. Acta Oecologica 29:335-345. https://doi.org/10.1016/j.actao.2005.12.003
  70. Raghunathan A, Reed J, Shin S, Palsson B, Daefler S. 2009. Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Systems Biology 3:38. https://doi.org/10.1186/1752-0509-3-38
  71. Raposo JF, Sobrinho LG, Ferreira HG. 2002. A Minimal Mathematical Model of Calcium Homeostasis. The Journal of Clinical Endocrinology and Metabolism 87:4330-4340. https://doi.org/10.1210/jc.2002-011870
  72. Ruppin E, Papin JA, de Figueiredo LF, Schuster S. 2010. Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Current Opinion in Biotechnology 21:502-510. https://doi.org/10.1016/j.copbio.2010.07.002
  73. Saha R, Chowdhury A, Maranas CD. 2014. Recent advances in the reconstruction of metabolic models and integration of omics data. Current Opinion in Biotechnology 29:39-45. https://doi.org/10.1016/j.copbio.2014.02.011
  74. Savageau MA. 1969. Biochemical systems analysis. Journal of Theoretical Biology 25:365-369. https://doi.org/10.1016/S0022-5193(69)80026-3
  75. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO. 2011. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature Protocols 6:1290-1307. https://doi.org/10.1038/nprot.2011.308
  76. Shampine LF, Reichelt MW. 1997. The MATLAB ODE Suite. SIAM Journal on Scientific Computing 18:1-22. https://doi.org/10.1137/S1064827594276424
  77. Shanklin T, Roper K, Yegneswaran PK, Marten MR. 2001. Selection of bioprocess simulation software for industrial applications. Biotechnology and Bioengineering 72:483-489. https://doi.org/10.1002/1097-0290(20010220)72:4<483::AID-BIT1010>3.0.CO;2-3
  78. Shim J, Lee SH, Jun S. 2010. Modeling of ohmic heating patterns of multiphase food products using computational fluid dynamics codes. Journal of Food Engineering 99:136-141. https://doi.org/10.1016/j.jfoodeng.2010.02.009
  79. Smith SM, Wastney ME, Nyquist LE, Shih CY, Wiesmann H, Nillen JL, Lane HW. 1996. Calcium kinetics with microgram stable isotope doses and saliva sampling. Journal of Mass Spectrometry 31:1265-1270. https://doi.org/10.1002/(SICI)1096-9888(199611)31:11<1265::AID-JMS419>3.0.CO;2-J
  80. Steggles LJ, Banks R, Shaw O, Wipat A. 2007. Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics 23:336-343. https://doi.org/10.1093/bioinformatics/btl596
  81. Sutherst RW. 2013. Pest species distribution modelling: origins and lessons from history. Biological Invasions 16:239-256.
  82. Sutherst RW, Maywald GF. 1985. A computerised system for matching climates in ecology. Agriculture, Ecosystems & Environment 13:281-299. https://doi.org/10.1016/0167-8809(85)90016-7
  83. Thiele I, Palsson BO. 2010. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols 5:93-121. https://doi.org/10.1038/nprot.2009.203
  84. Umulis DM, Serpe M, O'Connor MB, Othmer HG. 2006. Robust, bistable patterning of the dorsal surface of the Drosophila embryo. Proceedings of the National Academy of Sciences 103:11613-11618. https://doi.org/10.1073/pnas.0510398103
  85. Van Milgen J. 2002. Modeling biochemical aspects of energy metabolism in mammals. Journal of Nutrition 132:3195-3202. https://doi.org/10.1093/jn/131.10.3195
  86. Vilar JMG, Guet CC, Leibler S. 2003. Modeling network dynamics: the lac operon, a case study. The Journal of Cell Biology 161: 471-476. https://doi.org/10.1083/jcb.200301125
  87. Voit EO. 2000. Computational analysis of biochemical systems: a practical guide for biochemists and molecular biologists. Cambridge University Press, New York.
  88. Voit EO. 2013a. Biochemical Systems Theory: A Review. ISRN Biomathematics 2013: 53.
  89. Voit EO, 2013b. A first course in systems biology. Garland Science, New York.
  90. Wastney ME, Patterson BH, Linares OA, Greif PC, Boston RC. 1999. Investigating biological systems using modeling : strategies and software. Academic Press, San Diego.
  91. Wastney ME, Ng J, Smith D, Martin BR, Peacock M, Weaver CM. 1996. Differences in calcium kinetics between adolescent girls and young women. American Journal of Physiology 271:R208-216.
  92. Wastney ME, Martin BR, Peacock M, Smith D, Jiang XY, Jackman LA, Weaver CM. 2000. Changes in calcium kinetics in adolescent girls induced by high calcium intake. Journal of Clinical Endocrinology and Metabolism 85:4470-4475.
  93. Weaver CM, Wastney ME, Spence LA. 2002. Quantitative clinical nutrition approaches to the study of calcium and bone metabolism. Clinical Reviews in Bone and Mineral Metabolism 1:219-32. https://doi.org/10.1385/BMM:1:3-4:219
  94. Weaver CM, Janle E, Martin B, Browne S, Guiden H, Lachcik P, Lee WH. 2009. Dairy versus calcium carbonate in promoting peak bone mass and bone maintenance during subsequent calcium deficiency. Journal of Bone and Mineral Research 24:1411-1419. https://doi.org/10.1359/jbmr.090303
  95. Wong P, Gladney S, Keasling JD. 1997. Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and Lactose. Biotechnology Progress 13:132-143. https://doi.org/10.1021/bp970003o
  96. Xing J, De Baerdemaeker J. 2005. Bruise detection on 'Jonagold' apples using hyperspectral imaging. Postharvest Biology and Technology 37:152-162. https://doi.org/10.1016/j.postharvbio.2005.02.015
  97. Yildirim N, Mackey MC. 2003. Feedback Regulation in the Lactose Operon: A Mathematical Modeling Study and Comparison with Experimental Data. Biophysical Journal 84:2841-2851. https://doi.org/10.1016/S0006-3495(03)70013-7
  98. Zude M. 2003. Comparison of indices and multivariate models to non-destructively predict the fruit chlorophyll by means of visible spectrometry in apple fruit. Analytica Chimica Acta 481:119-126. https://doi.org/10.1016/S0003-2670(03)00070-9

과제정보

연구 과제 주관 기관 : Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET)