DOI QR코드

DOI QR Code

Formulation and Cytotoxicity of Ribosome-Inactivating Protein Mirabilis Jalapa L. Nanoparticles Using Alginate-Low Viscosity Chitosan Conjugated with Anti-Epcam Antibodies in the T47D Breast Cancer Cell Line

  • Wicaksono, Psycha Anindya ;
  • Sismindari, Sismindari ;
  • Martien, Ronny ;
  • Ismail, Hilda
  • Published : 2016.06.01

Abstract

Ribosome-inactivating protein (RIP) from Mirabilis jalapa L. leaves has cytotoxic effects on breast cancer cell lines but is less toxic towards normal cells. However, it can easily be degraded after administration so it needs to be formulated into nanoparticles to increase its resistance to enzymatic degradation. The objectives of this study were to develop a protein extract of M. jalapa L. leaves (RIP-MJ) incorporated into nanoparticles conjugated with Anti-EpCAM antibodies, and to determine its cytotoxicity and selectivity in the T47D breast cancer cell line. RIP-MJ was extracted from red-flowered M. jalapa L. leaves. Nanoparticles were formulated based on polyelectrolyte complexation using low viscosity chitosan and alginate, then chemically conjugated with anti-EpCAM antibody using EDAC based on carbodiimide reaction. RIP-MJ nanoparticles were characterised for the particle size, polydispersity index, zeta potential, particle morphology, and entrapment efficiency. The cytotoxicity of RIP-MJ nanoparticles against T47D and Vero cells was then determined with MTT assay. The optimal formula of RIP-MJ nanoparticles was obtained at the concentration of RIP-MJ, low viscosity chitosan and alginate respectively 0.05%, 1%, and 0.4% (m/v). RIP-MJ nanoparticles are hexagonal with high entrapment efficiency of 98.6%, average size of 130.7 nm, polydispersity index of 0.380 and zeta potential +26.33 mV. The $IC_{50}$ values of both anti-EpCAM-conjugated and non-conjugated RIP-MJ nanoparticles for T47D cells (13.3 and $14.9{\mu}g/mL$) were lower than for Vero cells (27.8 and $33.6{\mu}g/mL$). The $IC_{50}$ values of conjugated and non-conjugated RIP-MJ for both cells were much lower than $IC_{50}$ values of non-formulated RIP-MJ (>$500{\mu}g/mL$).

Keywords

Ribosome-inactivating protein;Mirabilis jalapa L. nanoparticle;chitosan;alginate;anti-EpCAM

References

  1. Amidi M, Mastrobattista E, Jiskoot W, et al (2010). Chitosan-Based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Rev, 62, 59-82. https://doi.org/10.1016/j.addr.2009.11.009
  2. Anonim (2008). Carbodiimides (EDAC) Heterobifunctionnal cross-linkers, http://www.interchim.fr/ft/5/52005A.pdf, Accessed on 21 November 2013.
  3. Baeuerle P, Gires O (1993). EpCAM (CD326) finding it is role in cancer. Br J Cancer, 96, 417- 23.
  4. Barbieri L, Batelli MG, Stirpe F (1993). Ribosome-inactivating proteins from plants. Biochim Biophys Acta, 1154, 237-82. https://doi.org/10.1016/0304-4157(93)90002-6
  5. Bradford MM (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  6. De Campos AM, Diebold Y, Carvalho ELS, et al (2004). Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res, 21, 803-10. https://doi.org/10.1023/B:PHAM.0000026432.75781.cb
  7. Frokjaer S, Otzen DE (2005). Protein drug stability: a formulation challenge, Nat Rev Drug Discov, 4, 298-306. https://doi.org/10.1038/nrd1695
  8. Gan Q, Wang T (2007). Chitosan nanoparticle as protein delivery carrier-systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces, 59, 24-34. https://doi.org/10.1016/j.colsurfb.2007.04.009
  9. Gombotz WR, Wee SF (1998). Protein Release from alginate matrices. Adv Drug Deliver Rev, 31, 267-85. https://doi.org/10.1016/S0169-409X(97)00124-5
  10. Grenha A, Seijo B, Remunan-Lopez C, et al (2005). Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci, 25, 427-37. https://doi.org/10.1016/j.ejps.2005.04.009
  11. Gupta RB (2006). Fundamentals of drug nanoparticles in nanoparticle technology for drug delivery, Eds Gupta RB and Kompella UB. Taylor & Francis Group, New York pp 1-9.
  12. Hamman JH (2010). Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine Drugs, 8, 1305-22. https://doi.org/10.3390/md8041305
  13. Hartig SM, Greene RR, Dikov MM, et al (2007). Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res, 24, 2353-69. https://doi.org/10.1007/s11095-007-9459-1
  14. Hashimoto M, Yang Z, Koya Y, et al (2005). Chitosan in nonviral gene therapy, gene design and delivery, Eds Taira K, Kataoka K, and Niidome T. Springer-Verlag, Tokyo, 63-74.
  15. Hu C, Chiang C, Yeh (2012). Influence of charge on FITCBSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers. Int J Nanomedicine, 7, 4861-72.
  16. Hussaana A, Chodidjah, Sismindari, et al (2010). Mekanisme in vitro induksi apoptosis dari RIP (Ribosome-Inactivating Protein) daun bunga pukul empat (Mirabilis jalapa L). Jurnal Sains Medika, 2, 23-31.
  17. Ikawati Z, Sudjadi, Sismindari (2006). Cytotoxicity against tumor cell lines of a Ribosome-lInactivating Protein (RIP)-like protein isolated from Leaves of Mirabilis jalapa L. Malay J Pharm Sci, 4, 31-41.
  18. Indrayudha P, Wijayanti N, Sismindari (2011). Antiangiogenesis activity of protein fraction containing MJ-C acidic ribosomeinactivating protein of Mirabilis jalapa L. Jurnal Bahan Alam Indonesia, 7, 277-81.
  19. Kimman M, Norman R, Jan S, et al (2012). The burden of cancer in member countries of the association of Southeast Asian nations (ASEAN). Asian Pac J Cancer Prev, 13, 411-20. https://doi.org/10.7314/APJCP.2012.13.2.411
  20. Kocbek P, Obermajer N, Cegnar M, et al (2007). Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Controlled Release, 120, 18-26. https://doi.org/10.1016/j.jconrel.2007.03.012
  21. Ling J, Liu W, Wang TP (2009). Cleavage of supercoiled doublestranded DNA by several ribosome-inactivating proteins in vitro. FEBS Lett, 345, 143-6.
  22. Lu F, Wu SH, Hung Y, et al (2009). Size effect on cell uptake in well-suspended. Uniform Mesoporous Silica Nanoparticles. Small, 5, 1408-13. https://doi.org/10.1002/smll.200900005
  23. Mohanraj VJ, Chen Y (2006). Nanoparticles-a review. Tropical J Pharmaceutical Res, 5, 561-73.
  24. Mosmann T (1983). Rapid colorimetric sssay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  25. Nidhin M, Indumathy R, Sreeram KJ, et al (2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bull Mater Sci, 31, 93-6. https://doi.org/10.1007/s12034-008-0016-2
  26. Osta WA, Chen Y, Mikhitarian K, et al (2004). EpCAM is overexpressed in breast cancer and it is a potential target for breast cancer gene therapy. Cancer Res, 64, 5818-24. https://doi.org/10.1158/0008-5472.CAN-04-0754
  27. Panyam J, Labhasetwar V (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Rev, 55, 329-47. https://doi.org/10.1016/S0169-409X(02)00228-4
  28. Peer D, Karp JM, Hong S, et al (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnol, 2, 751-60. https://doi.org/10.1038/nnano.2007.387
  29. Sarmento B, Ribeiro, Veiga F, et al (2007). Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res, 24, 2198-206. https://doi.org/10.1007/s11095-007-9367-4
  30. Saether HV, Holme HK, Maurstad G, et al (2008). Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym, 74, 813-21. https://doi.org/10.1016/j.carbpol.2008.04.048
  31. Sismindari, Husaana A, Mubarika S (1998). In vitro cleavage of supercoiled DNA by Annona squamosa extract. MFI, 9, 146-52.
  32. Sismindari, Hartati MS, Adhyatmika, et al (2010). Cytotoxic selectivity of MJC0.3 and MJC0.5, acidic ribosomeinactivating proteins isolated from Mirabilis jalapa L. leaves against various cancer cell lines. J Med Sci, 42, 39-43.
  33. Sterzynska K, Kempisty B, Zawierucha P, et al (2012). Analysis of the specificity and selectivity of anti-EpCAM antibodies in breast cancer cell lines. Folia Histochem Cytobiol, 50, 534-41. https://doi.org/10.5603/FHC.2012.0075
  34. Stirpe F (2004). Ribosome-inactivating proteins. Toxicon, 44, 371-83. https://doi.org/10.1016/j.toxicon.2004.05.004
  35. Sudjadi, Witasari LD, Sadarum MT, et al (2007). Efek sitotoksik suatu protein seperti ribosome-inactivating proteins yang bersifat asam dari daun Mirabilis jalapa L. pada sel kanker. MFI, 18, 8-14.
  36. Sundar S, Kundu J, Kundu SC, et al (2010). Biopolymeric nanoparticles, Sci Technol Adv Mater, 11, 1-13.
  37. Torchilin VP, Lukyanov AN (2003). Peptide and protein drug delivery to and into tumors: challenges and solutions, Drug Discov Today, 8, 259-66. https://doi.org/10.1016/S1359-6446(03)02623-0
  38. Vauthier C, Bouchemal K (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res, 26, 1025-58. https://doi.org/10.1007/s11095-008-9800-3
  39. Vivanco JM, Querci M, Salazar LF (1999). Antiviral and antiviroid activity of MAP-containing extracts from Mirabilis jalapa L. roots. Plant Dis, 83, 1116-21. https://doi.org/10.1094/PDIS.1999.83.12.1116
  40. Zhang H, Wu S, Tao Y, et al (2010). Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. J Nanomaterials, 2010, 1-5.

Cited by

  1. A new age for biomedical applications of Ribosome Inactivating Proteins (RIPs): from bioconjugate to nanoconstructs vol.23, pp.1, 2016, https://doi.org/10.1186/s12929-016-0272-1
  2. Secondary metabolites of Mirabilis jalapa structurally inhibit Lactate Dehydrogenase A in silico: a potential cancer treatment vol.333, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/333/1/012078