DOI QR코드

DOI QR Code

다공성 스테인리스 강 지지체의 표면개질에 따른 팔라듐-은 합금 수소 분리막의 수소 투과 선택도의 변화

김낙천;김세홍;이진범;김현희;양지혜;김동원
Kim, Nak-Cheon;Kim, Se-Hong;Lee, Jin-Beum;Kim, Hyun-Hee;Yang, Ji-Hye;Kim, Dong-Won

  • 투고 : 2016.06.07
  • 심사 : 2016.06.28
  • 발행 : 2016.06.30

초록

Pd-Ag alloy membranes have attracted a great deal of attention for their use in hydrogen purification and separation due to their high theoretical permeability, infinite selectivity and chemical compatibility with hydro-carbon containing gas streams. For commercial application, Pd-based membranes for hydrogen purification and separation need not only a high perm-selectivity but also a stable long-term durability. However, it has been difficult to fabricate thin, dense Pd-Ag alloy membranes on a porous stainless steel metal support with surface pores free and a stable diffusion barrier for preventing metallic diffusion from the porous stainless steel support. In this study, thin Pd-Ag alloy membranes were prepared by advanced Pd/Ag/Pd/Ag/Pd multi-layer sputter deposition on the modified porous stainless steel support using rough polishing/$ZrO_2$ powder filling and micro-polishing surface treatment, and following Ag up-filling heat treatment. Because the modified Pd-Ag alloy membranes using rough polishing/$ZrO_2$ powder filling method demonstrate high hydrogen permeability as well as diffusion barrier efficiency, it leads to the performance improvement in hydrogen perm-selectivity. Our membranes, therefore, are expected to be applicable to industrial fields for hydrogen purification and separation owing to enhanced functionality, durability and metal support/Pd alloy film integration.

키워드

Pd-Ag alloy hydrogen membrane;Perm-selectivity;Porous stainless steel support;Sputter multi-deposition;Surface treatment

참고문헌

  1. BP p.l.c, BP Statistical Review of World Energy, 63rd Ed, BP p.l.c, London (2014) 1-45.
  2. S. Uemiya, et al, Steam reforming of methane in a hydrogen-permeable membrane reactor, Appl. Catal., 67 (1990) 223-230. https://doi.org/10.1016/S0166-9834(00)84445-0
  3. J. C. Amphlett, et al, Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells, Int. J. Hydrogen Energy, 19 (1994) 131-137. https://doi.org/10.1016/0360-3199(94)90117-1
  4. K. A. Petersen, C. S. Nielsen, S. L. Jorgensen, membrane Reforming for Hydrogen, Catal. Today 46 (1998) 193-201. https://doi.org/10.1016/S0920-5861(98)00341-1
  5. Y. S. Cheng, et al, Performance of alumina, zeolite, palladium, Pd-Ag alloy membranes for hydrogen separation from towngas mixture, J. Membr. Sci., 204 (2002) 329-340. https://doi.org/10.1016/S0376-7388(02)00059-5
  6. H. C. Lim, The use of hydrogen energy in power sector and the future prospects, J. Elec. World. (2014) 31-40.
  7. Hatlevik. O, Sabina, et al, Palladium and palladium alloy membranes for hydrogen separation and production: History, fabrication strategies, and current performance, Sep. Purif. Technol. (2010) 59-64.
  8. S. E. Nam, K. H. Lee, A study on the palladium/nickel composite membrane by vacuum electrodeposition, J. Membr. Sci., 170 (2000) 91-99. https://doi.org/10.1016/S0376-7388(99)00359-2
  9. H. B. Zhao, G. X. Xiong, G. V. Baron, Preparation and characterization of palladium-based composite membranes by electroless plating and magnetron sputtering, Catalysis Today, 56 (2000) 89-96. https://doi.org/10.1016/S0920-5861(99)00266-7
  10. C. S. Jun, K. H. Lee, Palladium and palladium alloy composite membranes prepared by metalorganic chemical vapor deposition method(coldwall), J. Membr. Sci., 176 (2000) 121-130. https://doi.org/10.1016/S0376-7388(00)00438-5
  11. T. A. Peters, M. Stange, H. Klette, R. Bredesen, High pressure performance of thin Pd-23%Ag/ stainless steel composite membranes in water gas shift gas mixtures; influence of dilution, mass transfer and surface effects on the hydrogen flux, J. Membr. Sci., 316 (2008) 119-127. https://doi.org/10.1016/j.memsci.2007.08.056
  12. D. Wang, J. Tong, H. Xu, Y. Matsumura, Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide, Catalysis Today, 93 (2004) 689-693.
  13. Timothy L. Ward, Tien Dao, Model of hydrogen permeation behavior in palladium membranes, J. Membr. Sci., 153 (1999) 211-231. https://doi.org/10.1016/S0376-7388(98)00256-7
  14. S. K. Ryi, J. S. Park, Research trend of Pd-based hydrogen membrane, KIC News, Vol14, No.3, (2011) 46-53.
  15. Y. M. Lin, M. H. Rei, Separation of hydrogen from the gas mixtures out of catalytic reformer by using supported palladium membrane, Sep. Purif. Tech., 25 (2001) 87-95. https://doi.org/10.1016/S1383-5866(01)00094-6
  16. Y. She, J. Han, Y. H. Ma, Palladium membrane reactor for the dehydrogenation of ethylbenzene to styrene, Catalysis Today, 67 (2001) 43-53. https://doi.org/10.1016/S0920-5861(01)00280-2
  17. J. Shu, A. Adnot, B. P. A. Grandjean, S. Kaliaguine, Structurally stable composite pd-ag alloy membranes: introduction of a diffusion barrier, Thin Solid Films, 286 (1996) 72-79. https://doi.org/10.1016/S0040-6090(96)08544-6
  18. S. E. Nam, S. H. Lee, K. H. Lee, Preparation of a palladium alloy composite membrane supported in a porous stainless steel by vacuum electrodeposition, J. Membr. Sci.,153 (1999) 163-173. https://doi.org/10.1016/S0376-7388(98)00262-2
  19. N. Jemaa, J. Shu, S. Kaliaguine, B. P A, Grandjean, Thin Palladium Film Formation on Shot Peening Modified Porous Stainless Steel Substrates, Ind. Eng. Chem. Res., 35 (1996) 973-977. https://doi.org/10.1021/ie950437t
  20. Gennady S. Burkhanov, Nelli B. Gorina, Natalia B. Kolchugina and Nataliya R. Roshan, Palladiumbased alloy membranes for separation of high purity hydrogen from hydrogen containing gas mixtures, Platinum Metals Rev., 55 (2011) 4-6.
  21. O. M. Lovvik, T. A. Peters, R. Bredesen, Firstprinciples calculations on sulfur interacting with ternary Pd-Ag-transition metal alloy membrane alloys, J. Membr. Sci., 453 (2014) 525-531. https://doi.org/10.1016/j.memsci.2013.11.035
  22. D. Pizzi, R. Worth, M. G. Baschetti, G. C. Sarti, K. I. Noda, Hydrogen permeability of 2.5um palladium-silver membranes deposited on ceramic support, J. Membr. Sci., 325 (2008) 446-453. https://doi.org/10.1016/j.memsci.2008.08.020
  23. A. G. Knapton, Palladium alloys for hydrogen diffusion membranes, Platinum Metals Rev., 21 (1977) 44-50.
  24. J. Y. Han, S. R. Joo, J. H. Lee, D. G. Park, D. W. Kim, The effect of Sputtering Process Variable on the Properties of Pd Alloy Hydrogen Separation Membranes, J. Kor. Inst. Surf. Eng., 46 (2013) 248-257. https://doi.org/10.5695/JKISE.2013.46.6.248
  25. D. G. Park, H. J. Kim, H. J. Kim, D. W. Kim, A study on the Surface Pre-treatment of Palladium Alloy Hydrogen Membrane, J. Kor. Inst. Surf. Eng., 45 (2012) 248-256. https://doi.org/10.5695/JKISE.2012.45.6.248
  26. R. S. A. De lange, K. Keizer, A. J. Buurggraaf, Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes, J. Membr. Sci., 104 (1995) 81-100. https://doi.org/10.1016/0376-7388(95)00014-4
  27. S. K. Ryi, N. Xu, A. Li, C. J. Lim, J. R. Grace, Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTAfree bath, Int. J. Hydrogen Energy, 35 (2010) 2328-2335. https://doi.org/10.1016/j.ijhydene.2010.01.054
  28. C. H. Kim, J. H. Lee, S. T. Jo, D. W. Kim, Improvement in Long-term Stability of Pd Alloy Hydrogen Separation Membranes, J. Kor. Inst. Surf. Eng., 48 (2015) 11-22. https://doi.org/10.5695/JKISE.2015.48.1.011
  29. J. S. Park, D. W. Kim, K. R. Hwang, C. B. Lee, S. M. Kang, B. I. Woo, H. S. An, Y. G. Shin, and B. C. Sim, Manufacturing Method for Palladium-Silver Alloy Diffusion Barrier Layer, Korea Patent, 1012713940000, (2013).
  30. J. H. Lee, J. Y. Han, K. M. Kim, S. K. Ryi, D. W. Kim, Development of homogeneous Pd-Ag alloy membrane formed on porous stainless steel by multi-layered films and Ag-upfilling heat treatment, J. Membr. Sci, 492 (2015) 242-248. https://doi.org/10.1016/j.memsci.2015.04.029
  31. H. Baker, ASM Handbook 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1999) 29, Sections 2.2.
  32. H. Baker, ASM Handbook 3: Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1999) 200, Sections 2.2.
  33. J. Y. Han, C. H. Kim, S. H. Kim, D. W. Kim, Development of Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity, Adv. Mater. Sci. Eng., 2014 (2014) 1-10.
  34. V. Jayaraman, Y. S. Lin, Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes, J. Membr. Sci., 104 (1995) 251-262. https://doi.org/10.1016/0376-7388(95)00040-J
  35. George Xomeritakis, Y. S. Lin, Fabrication of thin metallic membranes by MOCVD and sputtering, J. Membr. Sci., 133 (1997) 217-230. https://doi.org/10.1016/S0376-7388(97)00084-7
  36. B. McCool, G. Xomeritakis, Y. S. Lin, Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes, J. Membr. Sci., 161 (1999) 67-76. https://doi.org/10.1016/S0376-7388(99)00087-3
  37. J. O'Brien, R. Hughes, J. hisek, Pd / Ag membranes on porous alumina substrates by unbalanced magnetron sputtering, Surf. Coat. Tech., 142-144 (2001) 253-259. https://doi.org/10.1016/S0257-8972(01)01198-7
  38. S. Tosti, L. Bettinali, S. Castelli, F. Sarto, S. Scaglione, V. Violante, Sputtered, electroless, and rolled palladium-ceramic membranes, J. Membr. Sci., 196 (2002) 241-249. https://doi.org/10.1016/S0376-7388(01)00597-X
  39. A. I. Pereira, P. Perez, S. C. Rodrigues, A. Mendes, L. M. Madeira, C. J. Tavares, Deposition of Pd-Ag thin film membranes on ceramic supports for hydrogen purification/separation, J. Membr. Sci., 61 (2014) 528-533.
  40. Alexander S. Augustine, Iva P. Mardilovich, Nikolaos K. Kazantzis, Yi Hua Ma, Durability of PSS-supported Pd-membranes under mixed gas and water-gas shift conditions, J. Membr. Sci., 415-416 (2012) 213-220. https://doi.org/10.1016/j.memsci.2012.05.001
  41. Ana Tarditi, Camila Gerboni, Laura Cornaglia, PdAu membranes supported on top of vacuumassisted $ZrO_2$-modified porous stainless steel substrates, J. Membr. Sci., 428 (2013) 1-10. https://doi.org/10.1016/j.memsci.2012.10.029

과제정보

연구 과제 주관 기관 : 한국에너지기술평가원(KETEP)