DOI QR코드

DOI QR Code

Modeling of Reversible and Irreversible Threshold Voltage Shift in Thin-film Transistors

박막트랜지스터의 병렬형 가역과 비가역 문턱전압 이동에 대한 모델링

Jung, Taeho
정태호

  • Received : 2016.05.17
  • Accepted : 2016.06.17
  • Published : 2016.07.01

Abstract

Threshold voltage shift has been observed from many thin-film transistors (TFTs) and the time evolution of the shift can be modeled as the stretched-exponential and -hyperbola function. These analytic models are derived from the kinetic equation for defect-creation or charge-trapping and the equation consists of only reversible reactions. In reality TFT's a shift is permanent due to an irreversible reaction and, as a result, it is reasonable to consider that both reversible and irreversible reactions exist in a TFT. In this paper the case when both reactions exist in parallel and make a combined threshold voltage shift is modeled and simulated. The results show that a combined threshold voltage shift observed from a TFT may agrees with the analytic models and, thus, the analytic models don't guarantee whether the cause of the shift is defection-creation or charge-trapping.

Keywords

Threshold voltage shift;Thin-film transistor;Kinetic equation

References

  1. J. H. Kang, C. E. Kim, P. Moon, and I. Yun, IEEE Trans Dev. Mater. Reliab., 11, 112 (2011). [DOI: http://dx.doi.org/10.1109/TDMR.2010.2096508] https://doi.org/10.1109/TDMR.2010.2096508
  2. Y. R. Liu, R. Liao, P. T. Lai, and R. H. Yao, IEEE Trans Dev. Mater. Reliab., 12, 58 (2012). [DOI: http://dx.doi.org/10.1109/TDMR.2011.2163408] https://doi.org/10.1109/TDMR.2011.2163408
  3. W. B. Jackson, Phys. Rev. B, 41, 1059 (1990). [DOI: http://dx.doi.org/10.1103/PhysRevB.41.1059] https://doi.org/10.1103/PhysRevB.41.1059
  4. R. B. Wehrspohn, M. J. Powell, and S. C. Deane, J. Appl. Phys., 93, 5780 (2003). [DOI: http://dx.doi.org/10.1063/1.1565689] https://doi.org/10.1063/1.1565689
  5. I. T. Cho, J. M. Lee, J. H. Lee, and H. I. Kwon, Secmicond. Sci. Technol., 24, 015013 (2009). [DOI: http://dx.doi.org/10.1088/0268-1242/24/1/015013] https://doi.org/10.1088/0268-1242/24/1/015013
  6. W. B. Jackson, J. M. Marshall, and M. D. Moyer, Phys. Rev. B, 39, 1164 (1989). [DOI: http://dx.doi.org/10.1103/PhysRevB.39.1164] https://doi.org/10.1103/PhysRevB.39.1164
  7. E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, IEEE. Trans. Device Mater. Rel., 11, 112 (2011). [DOI: http://dx.doi.org/10.1109/TDMR.2010.2096508] https://doi.org/10.1109/TDMR.2010.2096508
  8. A. A. Fomani and A. Nathan, J. Appl. Phys., 109, 084521 (2011). [DOI: http://dx.doi.org/10.1063/1.3569702] https://doi.org/10.1063/1.3569702
  9. T. Jung, J. Appl. Phys., 117, 144501 (2015). [DOI: http://dx.doi.org/10.1063/1.4917209] https://doi.org/10.1063/1.4917209
  10. R. B. Wehrspohn, M. J. Powell, and S. C. Deane, J. Appl. Phys., 93, 5780 (2003). [DOI: http://dx.doi.org/10.1063/1.1565689] https://doi.org/10.1063/1.1565689
  11. H. H. Choi, M. S. Kang, M. Kim, H. Kim, J. H. Cho, and K. Cho, Adv. Funct. Mater., 23, 690 (2013). [DOI: http://dx.doi.org/10.1002/adfm.201201545] https://doi.org/10.1002/adfm.201201545
  12. R. B. Wehrspohn, S. C. Deane, I. D. French, and M. J. Powell, J. Non-Cryst. Solids, 266, 459 (2000). [DOI: http://dx.doi.org/10.1016/S0022-3093(99)00777-2]
  13. D. Gupta, S. Yoo, C. Lee, and Y. Hong, IEEE Trans. Electron Dev., 58, 1995 (2011). [DOI: http://dx.doi.org/10.1109/TED.2011.2138143] https://doi.org/10.1109/TED.2011.2138143
  14. S. Sambandan, L. Zhu, D. Striakhilev, P. Servati, and A. Nathan, IEEE Electron Device Lett., 26, 375 (2005). [DOI: http://dx.doi.org/10.1109/LED.2005.848116] https://doi.org/10.1109/LED.2005.848116
  15. T. Jung, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 92 (2013).

Acknowledgement

Supported by : 서울과학기술대학교