Decrease of Interface Trap Density of Deposited Tunneling Layer Using CO2 Gas and Characteristics of Non-volatile Memory for Low Power Consumption

CO2가스를 이용하여 증착된 터널층의 계면포획밀도의 감소와 이를 적용한 저전력비휘발성 메모리 특성

Lee, Sojin;Jang, Kyungsoo;Nguyen, Cam Phu Thi;Kim, Taeyong;Yi, Junsin

  • Received : 2016.04.04
  • Accepted : 2016.06.21
  • Published : 2016.07.01


The silicon dioxide ($SiO_2$) was deposited using various gas as oxygen and nitrous oxide ($N_2O$) in nowadays. In order to improve electrical characteristics and the interface state density ($D_{it}$) in low temperature, It was deposited with carbon dioxide ($CO_2$) and silane ($SiH_4$) gas by inductively coupled plasma chemical vapor deposition (ICP-CVD). Each $D_{it}$ of $SiO_2$ using $CO_2$ and $N_2O$ gas was $1.30{\times}10^{10}cm^{-2}{\cdot}eV^{-1}$ and $3.31{\times}10^{10}cm^{-2}{\cdot}eV^{-1}$. It showed $SiO_2$ using $CO_2$ gas was about 2.55 times better than $N_2O$ gas. After 10 years when the thin film was applied to metal/insulator/semiconductor(MIS)-nonvolatile memory(NVM), MIS NVM using $SiO_2$($CO_2$) on tunneling layer had window memory of 2.16 V with 60% retention at bias voltage from +16 V to -19 V. However, MIS NVM applied $SiO_2$($N_2O$) to tunneling layer had 2.48 V with 61% retention at bias voltage from +20 V to -24 V. The results show $SiO_2$ using $CO_2$ decrease the $D_{it}$ and it improves the operating voltage.


$CO_2$;NVM;ONO structure;Tunnel oxide;Tunneling


  1. A. Chen, Solid State Device Research Conference 2015 45th European (eds. W. Pribyl, T. Grasser and M. Schrems) (IEEE, 2015) p. 109
  2. M. A. Beunder, R. V. Kampen, D. Lacey, M. Renault, and C. G. Smith, Non-Volatile Memory Technology Symposium 2005 (IEEE, 2005) p. 65
  3. C. H. Cheng, F. S. Yeh, and A. Chin, Adv. Mater., 23, 902 (2011). [DOI:]
  4. H. C Card and M. I. Elmasry, Solid-State Electronics, 19, 863 (1976). [DOI:]
  5. Y. C. King, Y. J. King, and C. Hu, IEEE Electron Devices Lett., 20, 409 (1999). [DOI:]
  6. H. T. Chen, S. I. Hsieh, C. J. Lin, and Y. C. King, IEEE Electron Devices Lett., 28, 499 (2007). [DOI:]
  7. J. H. Joo, J. Kor. Inst. Surf. Eng., 41, 279 (2008). [DOI:]
  8. D. L. Smith and A. S. Alimonda, J. Electronchem. Soc., 140, 1496 (1993).
  9. K. Radouane, L. Date, M. Yousfi, B. Despax, and H. Caquineau, J. Phys. D: Appl. Phys., 33, 1332 (2000). [DOI:]
  10. M. I. Alayo, I. Pereyra, W. L. Scopel, and M.C.A. Fantini, Thin Solid Films, 402, 154 (2002). [DOI:]
  11. G. Lucovsky, Z. Jing, and D. R. Lee, J. Vac. Sci. Technol. B, 14, 2832 (1996). [DOI:]
  12. B. Holm, T. Ahuja, A. Belonoshko, and B. Johansson, Phys. Rev. Lett., 85, 1259 (2000). [DOI:]
  13. M. T. Lee, C. H. Liu, and K. Y. Fu, (1999).
  14. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley and Sons, New York, 1982)
  15. J. Robertson and M. J. Powell, Appl. Phys. Lett., 44, 415 (1984). [DOI:]
  16. K. F. Albertin and I. Pereyra, Microelectronic Engineering, 77, 144 (2005). [DOI:]
  17. C. Y. Kim, S. H. Kim, R. Navamathavan, C. K. Choi, and W. Y. Jeung, Thin Solid Film, 516, 340 (2007). [DOI:]
  18. M. Suzuki, T. Yamaguchi, N. Fukushima, and M. Koyama, J. Appl. Phys., 103, 034118 (2008). [DOI:]


Supported by : Korea Small and Medium Business Administration