DOI QR코드

DOI QR Code

A Study on the Metal Mesh for CuNx-Cu-CuNx Multi-layer Touch Electrode by Reactive Magnetron Sputtering

Reactive Magnetron Sputtering 적용 CuNx-Cu-CuNx 적층형 Metal Mesh 터치센서 전극 특성 연구

Kim, Hyun-Seok;Yang, Seong-Ju;Noh, Kyeong-Jae;Lee, Seong-Eui
김현석;양성주;노경재;이성의

  • Received : 2016.04.07
  • Accepted : 2016.06.20
  • Published : 2016.07.01

Abstract

In the present study, the $CuN_x-Cu-CuN_x$ layer the partial pressure ratio Cu metal of Ar and $N_2$ gas using a DC magnetron sputtering device, was generated by the In-situ method. $CuN_x$ layer was able to obtain a surface reflectance reduction effect from the advantages of the process and the external light. $CuN_x$ layer is gas partial pressure, DC the Power, the deposition time variable transmittance in response to the thickness and partial pressure ratio, the reflectance was measured. $Ar:N_2$ gas ratio 10:10(sccm), DC power 0.35 A, was derived Deposition time 90 sec optimum conditions. Thus, according to the optimal thickness and the composition ratio was derived surface reflectance of 20.75%. In addition, to derive the value of ${\Delta}$ Ra surface roughness of 0.467. It was derived $CuN_x$ band-gap energy of about 2.2 eV. Thus, to ensure a thickness and process conditions can be absorbed to maximize the light in a wavelength band in the visible light region. As a result, the implementation of the $12k{\Omega}$ base line resistance of using the Cu metal. This is, 5 inch Metal mesh TSP(L/S: $4/270{\mu}m$) is in the range of the reference operation.

Keywords

ITO;Metal mesh;Starburst;Reflectance;Absorptance;Band-gap

References

  1. H. S. Jang, Thesis, 6, University of Ulsan, Ulsan (2008).
  2. J. S. Kim and Y. B. Han, Thesis, 10, Chonbuk National University, Jeonju (2010).
  3. D. Dorranian, L. Dejam, and G. Mosayebian, Journal of Theoretical and Applied Physics, 6, 13 (2012). [DOI: http://dx.doi.org/10.1186/2251-7235-6-13] https://doi.org/10.1186/2251-7235-6-13
  4. J. Xiao, Y. Li, and A. Jiang, J. Mater. Sci. Technol., 27, 403 (2011). [DOI: http://dx.doi.org/10.1016/S1005-0302(11)60082-0] https://doi.org/10.1016/S1005-0302(11)60082-0
  5. Y. Fang, J. Persson, C. Zha, J. Willman, C. W. Miller, and J. Akerman, J. Appl. Phys., 111, 073912 (2012). [DOI: http://dx.doi.org/10.1063/1.3703067] https://doi.org/10.1063/1.3703067
  6. M. Ghoohestani, M. Karimipour, and Z. Javdani, Royal Swedish Academy of Sciences Phys. Scr., 89, 7 (2014).
  7. P. Klumdoung, S. Chaiyakun, and P. Limsuwan, As. J. Energy Env., 60 (2010).
  8. K. I. Kim and S. D. Hong, J. SSF, 35, 77 (2002).
  9. Y. S. Park and H. S Shin, J. KSCS, 29 (2015).
  10. A. Rahmati, H. Bidadi, K. Ahmadi, and F. Hadian, J. Coat. Technol. Res., 8, 289 (2011). [DOI: http://dx.doi.org/10.1007/s11998-010-9279-9] https://doi.org/10.1007/s11998-010-9279-9
  11. S. F. Wang, H. C. Lin, H. Y. Bor, Y. L. Tsai, and C. N. Wei, J. Alloy. Compd., 509, 10110 (2011). [DOI:http://dx.doi.org/10.1016/j.jallcom.2011.08.052] https://doi.org/10.1016/j.jallcom.2011.08.052
  12. L. R. Cruz, C. Legnani, I. G. Matoso, C. L. Ferreira, and H. R. Moutinho, Materials Research Bulletin, 39, 993 (2004). [DOI: http://dx.doi.org/10.1016/j.materresbull.2004.03.008] https://doi.org/10.1016/j.materresbull.2004.03.008
  13. M. Mikula, D. Bucacta, and E. Pincik, Physica Slovaca, 51, 35 (2001).
  14. S. Y. Choi, S. J. Chun, Y. H Jung, S. H. Lee, S. H. Bae, S. J. Tark, J. H. Kim, and D. H. Kim, Kor. J. Mater. Res., 21 (2011).
  15. H. M. Kim, D. Y. Ma, and K. C. Park, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 984 (2012).
  16. J. Y. Lee, S. H. Ryu, M. H. Sung, and S. E. Lee, J. IEEE, 25, 651 (2012).