DOI QR코드

DOI QR Code

Analysis on Power Burden of HTSC Module due to Fault Current's Amplitude of a Flux-Lock Type SFCL with Two Triggering Currents

두 트리거 전류를 갖는 자속구속형 초전도한류기의 고장전류 크기에 따른 초전도 모듈의 전력부담 분석

  • Received : 2016.04.18
  • Accepted : 2016.06.07
  • Published : 2016.07.01

Abstract

In this paper, the power burden of High-TC superconducting (HTSC) module comprising the flux-lock type superconducting fault current limiter (SFCL) with two triggering currents during the fault period was analyzed. The short-circuit tests for the simulated power system with the SFCL in the different fault positions, which were expected to affect the amplitude of the fault current, were carried out. Through the comparative analysis on the power burden of the HTSC modules, the proposed flux-lock type SFCL was confirmed to be effective to divide into two power burdens according to the amplitude of the fault currents.

Keywords

Flux-lock type superconducting fault current limiter (SFCL);Two triggering currents;Fault positions;Power burden

References

  1. L. Salasoo, A. F. Imece, R. W. Delmerico, and R. D. Wyatt, IEEE Trans. on Appl. Supercond., 5, 2 (1995). [DOI: http://dx.doi.org/10.1109/77.402739] https://doi.org/10.1109/77.384560
  2. M. Noe and B. R. Oswald, IEEE Trans. on Appl. Supercond., 9, 2 (1999). [DOI: http://dx.doi.org/10.1109/77.783552] https://doi.org/10.1109/77.763249
  3. L. Ye, L. Z. Lin, and K. P. Juengst, IEEE Trans. on Appl. Supercond., 12, 1 (2002). [DOI: http://dx.doi.org/10.1109/TASC.2002.1018344] https://doi.org/10.1109/TASC.2002.1018344
  4. L. Ye and A. Campbell, IEEE Trans. on Appl. Supercond., 16, 2 (2006). [DOI: http://dx.doi.org/10.1109/TASC.2006.870526] https://doi.org/10.1109/TASC.2006.869914
  5. H. Shimiau, Y. Yokomizu, and T. Matsumura, IEEE Trans. on Appl. Supercond., 14, 2 (2004). [DOI: http://dx.doi.org/10.1109/TASC.2004.828450] https://doi.org/10.1109/TASC.2004.828450
  6. T. Janowski, S. Kozak, B. K. Kucewicz, G. Wojtasiewicz, and J. Kozak, IEEE Trans. on Appl. Supercond., 17, 2 (2007). [DOI: http://dx.doi.org/10.1109/TASC.2007.898134] https://doi.org/10.1109/TASC.2007.903960
  7. T. Janowski, H. D. Stryczewska, S. Kozak, B. K. Kucewicz, G. Wojtasiewicz, J. Kozak, P. Surdacki, and H. Malinowski, IEEE Trans. on Appl. Supercond., 14, 2 (2004). [DOI: http://dx.doi.org/10.1109/TASC.2004.830298] https://doi.org/10.1109/TASC.2004.828450
  8. S. H. Lim, Physica C, 470, 1631 (2010). [DOI: http://dx.doi.org/10.1016/j.physc.2010.05.177] https://doi.org/10.1016/j.physc.2010.05.177
  9. S. C. Ko, S. H. Lim, and T. H. Han, Physica C, 484, 263 (2013). [DOI: http://dx.doi.org/10.1016/j.physc.2012.03.041] https://doi.org/10.1016/j.physc.2012.03.041
  10. J. H. Lee and S. K. Joo, IEEE Trans. on Appl. Supercond., 23, 3 (2013). [DOI: http://dx.doi.org/10.1109/TASC.2013.2266401] https://doi.org/10.1109/TASC.2013.2266401

Acknowledgement

Supported by : 한국연구재단