DOI QR코드

DOI QR Code

Development of Ag Nanowire Patterning Process Using Sacrificial Layer

희생층을 이용한 은 나노와이어 패터닝 공정 개발

  • Received : 2016.05.03
  • Accepted : 2016.06.13
  • Published : 2016.07.01

Abstract

We developed a Ag nanowire patterning technique using a water-soluble sacrificial layer. To form a water-soluble sacrificial layer, germanium was deposited on the substrate and then water-soluble germanium oxide was simply formed by thermal oxidation of germanium using a conventional furnace. The formation of Ag nanowire patterns with various line and space arrangements was successfully demonstrated using this patterning process. The main advantage of this patterning technique is that it does not use a strong acid etchant, thereby preventing damage to the Ag nanowire during the patterning process.

Keywords

Ag nanowire;Sacrificial layer;Germanium oxide;SU-8

References

  1. S. Jung, S. Lee, M. Song, D. G. Kim, D. S. You, J. K. Kim, C. S. Kim, T. M. Kim, K. H. Kim, J. J. Kim, and J. W. Kang, Adv. Energy. Mater., 4, 1300474 (2014). https://doi.org/10.1002/aenm.201300474
  2. X. Zhang, J. Wu, J. Wang, J. Zhang, Q. Yang, Y. Fu, and Z. Xie, Sol. Energ. Mat. Sol. C., 244, 143 (2016). [DOI: http://dx.doi.org/10.1016/j.solmat.2015.08.039]
  3. A. Catheline, F. Paolucci, G. Valenti, P. Poulin, and A. Penicaud, J. Mater. Res., 30, 2009 (2015). [DOI: http://dx.doi.org/10.1557/jmr.2015.166] https://doi.org/10.1557/jmr.2015.166
  4. M. J. Cha, S. M. Kim, S. J. Kang, J. H. Seo, and B. Walker, RSC Adv., 5, 65646 (2015). [DOI: http://dx.doi.org/10.1039/C5RA10838A] https://doi.org/10.1039/C5RA10838A
  5. S. E. Park, S. Kim, D. Y. Lee, E. Kim, and J. Hwang, J. Mater. Chem. A, 1, 14286 (2013). [DOI: http://dx.doi.org/10.1039/c3ta13204h] https://doi.org/10.1039/c3ta13204h
  6. Y. Ahn, H. Lee, D. Lee, and Y. Lee, ACS Appl. Mater. Interfaces, 6, 18401 (2014). [DOI: http://dx.doi.org/10.1021/am504462f] https://doi.org/10.1021/am504462f
  7. M. S. Kim, D. H. Lee, K. B. Kim, S. H. Jung, J. K. Lee, O. Beom-Hoan, S. G. Lee, and S. G. Park, Thin Solid Films, 587, 100 (2015). [DOI: http://dx.doi.org/10.1016/j.tsf.2015.02.028] https://doi.org/10.1016/j.tsf.2015.02.028
  8. A. R. Madaria, A. Kumar, F. N. Ishikawa, and C. Zhou, Nano. Res., 3, 564 (2010). [DOI: http://dx.doi.org/10.1007/s12274-010-0017-5] https://doi.org/10.1007/s12274-010-0017-5
  9. S. J. Henley, M. Cann, I. Jurewicz, A. Dalton, and D. Milne, Nanoscale, 6, 946 (2014). [DOI: http://dx.doi.org/10.1039/C3NR05504C] https://doi.org/10.1039/C3NR05504C
  10. Z. Tan, W. Shi, C. Guo, Q. Zhang, L. Yang, X. Wu, G. Cheng, and R. Zheng, Nanoscale, 7, 17268 (2015). [DOI: http://dx.doi.org/10.1039/C5NR02876K] https://doi.org/10.1039/C5NR02876K
  11. H. Oh, and M. Lee, Mater. Lett., 176, 110 (2016). [DOI: http://dx.doi.org/10.1016/j.matlet.2016.04.098] https://doi.org/10.1016/j.matlet.2016.04.098
  12. C. Chung, and M. Allen, J. Micromech. Microeng., 15, N1 (2005). [DOI: http://dx.doi.org/10.1088/0960-1317/15/1/021] https://doi.org/10.1088/0960-1317/15/1/N01
  13. D. E. Pesantez, E. K. Amponsah, and A. P. Gadre, Sens Actuators. B Chem., 132, 426 (2008). [DOI: http://dx.doi.org/10.1016/j.snb.2007.10.060] https://doi.org/10.1016/j.snb.2007.10.060
  14. J. A. Jeong, H. K. Kim, and J. Kim, Sol. Energ. Mat. Sol. C., 125, 113 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.03.003] https://doi.org/10.1016/j.solmat.2014.03.003
  15. Y. H. Kim, J. Lee, S. Hofmann, M. C. Gather, L. Muller-Meskamp, and K. Leo, Adv. Funct. Mater., 23, 3763 (2013). [DOI: http://dx.doi.org/10.1002/adfm.201203449] https://doi.org/10.1002/adfm.201203449
  16. T. Sameshima, K. Yoshioka, and K. Takechi, Jpn. J. Appl. Phys., 44, 6421 (2005). [DOI: http://dx.doi.org/10.1143/JJAP.44.6421] https://doi.org/10.1143/JJAP.44.6421

Acknowledgement

Supported by : 한국산업기술진흥협회, 한국연구재단