DOI QR코드

DOI QR Code

An Isolated High Step-Up Converter with Non-Pulsating Input Current for Renewable Energy Applications

Hwu, Kuo-Ing;Jiang, Wen-Zhuang

  • Received : 2015.10.03
  • Accepted : 2016.02.21
  • Published : 2016.07.20

Abstract

This study proposes a novel isolated high step-up galvanic converter, which is suitable for renewable energy applications and integrates a boost converter, a coupled inductor, a charge pump capacitor cell, and an LC snubber. The proposed converter comprises an input inductor and thus features a continuous input current, which extends the life of the renewable energy chip. Furthermore, the proposed converter can achieve a high voltage gain without an extremely large duty cycle and turn ratio of the coupled inductor by using the charge pump capacitor cell. The leakage inductance energy can be recycled to the output capacitor of the boost converter via the LC snubber and then transferred to the output load. As a result, the voltage spike can be suppressed to a low voltage level. Finally, the basic operating principles and experimental results are provided to verify the effectiveness of the proposed converter.

Keywords

Isolated high step-up galvanic converter;Continuous input current;Coupled inductor;Charge pump;LC snubber

References

  1. H. Hu, S. Harb, N. Kutkut, I. Batarseh, and Z. J. Shen, “Power decoupling techniques for micro-inverters in PV systems-a review,” IEEE ECCE’10, pp. 3235-3240, 2010.
  2. Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different dc link configurations,” IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1320-1333, May 2008. https://doi.org/10.1109/TPEL.2008.920883
  3. M. David, N. Scholten, and W. L. Soong, “Mirco-inverters in small scale PV systems: a review and future directions,” IEEE AUPEC’13, pp. 1-6, 2013.
  4. R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell: KLuwer Academic Publishers, 2001.
  5. K. I. Hwu and T. J. Peng, “High-voltage-boosting converter with charge pump capacitor and coupling inductor combined with buck-boost converter,” IET Power Electron., Vol. 47, No. 1, pp. 177-188, Jan. 2014. https://doi.org/10.1049/iet-pel.2013.0229
  6. G. M. L. Chu, D. D. C. Lu, and V. G. Agelidis, “Flyback-based high step-up converter with reduced power processing,” IET Power Electron., Vol. 5, No. 3, pp. 349-357, Mar. 2012. https://doi.org/10.1049/iet-pel.2011.0204
  7. S. Dwari and L. Parsa, “An efficient high-step-up interleaved dc-dc converter with a common active clamp,” IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 66-78, Jan. 2011. https://doi.org/10.1109/TPEL.2010.2051816
  8. K. I. Hwu and Y. T. Yau, “High step-up converter based on coupling inductor and bootstrap capacitors with active clamping,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2655-2660, Jun. 2014. https://doi.org/10.1109/TPEL.2013.2289387
  9. Y. Berkovich and B. Axelrod, “High step-up dc-dc converter with coupled inductor and reduced switch-voltage stress,” IEEE IECON’12, pp. 453-458, 2012.
  10. K. I. Hwu and W. Z. Jiang, “Voltage gain enhancement for a step-up converter constructed by KY and buck-boost converters,” IEEE Trans. Ind. Electron., Vol. 61, No. 4, pp. 1758-1768, Apr. 2014. https://doi.org/10.1109/TIE.2013.2263779
  11. Y. Tang, T. Wang, and Y. He, “A switched-capacitor-based active network converter with high voltage gain,” IEEE Trans. Power Electron., Vol. 29, No. 6, pp. 2959-2968, Jun. 2014. https://doi.org/10.1109/TPEL.2013.2272639
  12. K. I. Hwu and W. C. Tu, “Voltage-boosting converters with energy pumping,” IET Power Electron., Vol. 5, No. 2, pp. 185-195, Feb. 2012. https://doi.org/10.1049/iet-pel.2011.0076
  13. Y. J. A. Alcazar, D. de Souza Oliveira, F. L. Tofoli, and R. P. Torrico-Bascope, “DC-DC nonisolated boost converter based on the three-state switching cell and voltage multiplier cells,” IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4438-4449, Oct. 2013. https://doi.org/10.1109/TIE.2012.2213555
  14. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, “Voltage multiplier cells applied to non-isolated dc-dc converters,” IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871-887, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915762
  15. M. Pavlovsky, S. W. H. de Hann, and J. A. Ferreira, “Reaching high power density in multikilowatt dc-dc converters with galvanic isolation,” IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 603-612, Mar. 2009. https://doi.org/10.1109/TPEL.2008.2008650
  16. G. Spiazzi, P. Mattavelli, and C. Alessandro, “High step-up ratio flyback converter with active clamp and voltage multiplier,” IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 603-612, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2134871
  17. J. H. Jang, D. H. Kim, J. W. Seo, and J. H. Park, “Series-connected isolated switched-capacitor tappedinductor boost converter,” IEEE PEDS’13, 277-279, 2013.
  18. M. Kasper, M. Ritz, D. Bortis, and J. W. Kolar, ”PV panel-integrated high step-up high efficiency isolated GaN dc-dc boost converter,” IEEE INTELEC’13, pp. 1-7, 2013.
  19. D. Murthy-Bellur and M. K. Kazimierczuk, “Two-switch flyback PWM DC-DC converter in discontinuous-conduction mode,” Int. J. Circ. Theor. Appl., Vol. 39, No. 8, pp. 849-864, Aug. 2011.
  20. D. Murthy-Bellur and M. K. Kazimierczuk, “Two-switch flyback PWM DC-DC converter in continuous-conduction mode,” Int. J. Circ. Theor. Appl., Vol. 39, No. 11, pp. 1145-1160, Nov. 2011. https://doi.org/10.1002/cta.690
  21. K. I. Hwu, W. Z. Jiang, and J. Y. Chien, “Isolated high voltage-boosting converter derived from forward converter,” Int. J. Circ. Theor. Appl., Vol. 44, No. 2, pp. 280-304, Feb. 2016. https://doi.org/10.1002/cta.2076
  22. K. I. Hwu, Y. T. Yau, and L. L. Lee, “Powering LED using high-efficiency SR flyback converter,” IEEE Trans. Ind. Appl., Vol. 47, No. 1, pp. 376-386, Jan./Feb. 2011. https://doi.org/10.1109/TIA.2010.2091234
  23. K. Patidar and A. C. Umarikar, “A step-up PWM DC-DC converter for renewable energy applications,” Int. J. Circ. Theor. Appl., Vol. 44, No. 4, pp. 817-832, Apr. 2016. https://doi.org/10.1002/cta.2108
  24. T. Takiguchi and H. Koizumi, “Quasi-Z-source DC-DC converter with voltage-lift technique,” IEEE IECON’13, pp. 1191-1196, 2013.
  25. Y. P. Siwakoti, F. Blaabjerg, and P. C. Loh, “Quasi-Y-source boost DC-DC converter,” IEEE Trans. Power Electron., Vol. 30, No. 12, pp. 6514-6519, Dec. 2015. https://doi.org/10.1109/TPEL.2015.2440781
  26. K. Patidat and A. C. Umarikar, “High step-up pulse-width modulation DC-DC converter based on quasi-Z-source topology,” IET Power Electron., Vol. 8, No. 4, pp. 477-488, Apr. 2015. https://doi.org/10.1049/iet-pel.2014.0311
  27. C. T. Pan, M. C. Cheng, C. M. Lai, and P. Y. Chen, “Current-ripple-free module integrated converter with more precise maximum power tracking control for PV energy harvesting,” IEEE Trans. Ind. Appl., Vol. 51, No. 1, pp. 271-278, Jan./Feb. 2015. https://doi.org/10.1109/TIA.2014.2326076
  28. K. I. Hwu, W. Z. Jiang and Y. T. Yau, “An isolated high step-up converter with continuous input current and LC snubber,” IEEE APEC’16, pp. 2415-2421, 2016.
  29. “L6565 Quasi-resonant controller,” ST Tech. Rep., 2003.