Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng

  • Received : 2015.11.25
  • Accepted : 2016.03.01
  • Published : 2016.07.20


This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.


Chattering free;Generalized proportional integral (GPI) observer;Permanent magnet synchronous motor (PMSM);Sliding mode control (SMC);Speed regulation


  1. A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., Vol. 45, No. 10, pp. 4672-4675, Oct. 2009.
  2. O.-S Park, J.-W Park, C.-B Bae, and J.-M Kim, “A dead time compensation algorithm of independent multi-phase PMSM with three-dimensional space vector control,” Journal of Power Electronics, Vol. 13, No. 1, pp. 77-85, Jan. 2013.
  3. B.-J. Kang and C.-M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., Vol. 48, No. 5, pp. 956-967, Oct. 2001.
  4. R. Errouissi, M. Ouhrouche, W.-H. Chen, and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., Vol. 59, No. 7, pp. 2849-2858, Jul. 2012.
  5. H. X. Liu and S. H. Li, “Speed control for PMSM servo system using predictive functional control and extended state observer,” IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 1171-1183, Feb. 2012.
  6. S. H. Li, J. Yang, W.-H. Chen, and X. S. Chen, Disturbance Observer-Based Control Methods and Applications, CRC Press, Taylor & Francis Group, 2014.
  7. W.-H Chen, J. Yang, L. Guo, and S. H. Li, “Disturbance-observer-based control and related methods-an overview,” IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 1083-1095, Feb. 2016.
  8. S. H. Li, H. X. Liu, and S. H. Ding, “A speed control for a PMSM using finite time feedback control and disturbance compensation,” Transaction of the Institute of Measurement and Control, Vol. 32, No. 2, pp. 170-187, Apr. 2010.
  9. J. Yang, S. H. Li, J. Y. Su, and X. H. Yu, “Continuous non-singular terminal sliding mode control for systems with mismatched disturbances,” Automatica, Vol, 49, No. 7, pp. 2287-2291, Jul. 2013.
  10. S.-H. Lee, Y.-J. Joo, J.-H. Back, J.-H. Seo, and I. Choy, “Sliding mode controller for torque and pitch control of PMSG wind power systems,” Journal of Power Electronics, Vol. 11, No. 3, pp. 342-349, May 2011.
  11. F. F. M. EI-Sousy, “Robust tracking control based on intelligent sliding-mode model-following position controllers for PMSM servo drives,” Journal of Power Electronics, Vol. 7, No. 2, pp. 159-173, Mar. 2007.
  12. S. H. Li and Z. G. Liu, “Adaptive speed control for permanent magnet synchronous motor system with variations of load inertia,” IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3050-3059. Aug. 2009.
  13. H. H. Choi, N. T. T. Vu, and J.-W. Jung, “Digital implementation of an adaptive speed regulator for a PMSM,” IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 3-8, Jan. 2011.
  14. J.-S. Ko, S.-H. Ko, and Y.-C. Kim, “Robust adaptive precision position control of PMSM,” Journal of Power Electronics, Vol. 6, No. 4, pp. 347-355, Jul. 2006.
  15. F. F. M. EI-Sousy, “Robust adaptive wavelet-neuralnetwork sliding mode speed control for a DSP-based PMSM drive system,” Journal of Power Electronics, Vol. 10, No. 5, pp. 505-517, Sep. 2010.
  16. Y. Yang, D. M. Vilathgamuwa, and M. A. Rahman, “Implementation of an artificial-neural-network-based real-time adaptive controller for an interior permanent-magnet motor drive,” IEEE Trans. Ind. Electron., Vol. 39, No. 1, pp. 96-104, Jan./ Feb. 2003.
  17. J. Yang, S. H. Li, and X. H. Yu, “Sliding mode control for systems with mismatched uncertainties via a disturbance observer,” IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 160-169, Jan. 2013.
  18. J.-W. Jung, V. Q. Leu, D. Q. Dang, H. H. Choi, and T. H. Kim, “Sliding mode control of SPMSM drivers-An online gain tuning approach with unknown system parameters,” Journal of Power Electronics, Vol. 14, No. 5, pp. 980-988, Sep. 2014.
  19. A. Saghafinia, H. W. Ping, M. N. Uddin, and K. S. Gaeid, “Adaptive fuzzy sliding-mode control into chattering-free IM drive,” IEEE Trans. Ind. Appl., Vol. 51, No. 1, pp. 692-701, Jan./Feb. 2015.
  20. J. Y. Peng and X. B. Chen, “Integrated PID-based sliding mode state estimation and control for piezoelectric actuators,” IEEE/ASME Trans. Mechatronics, Vol. 19, No.1, pp. 88-99, Feb. 2014.
  21. S. H. Li, K. Zong, and H. X. Liu, “A composite speed controller based on a second order model of pmsm system,” Transaction of the Institute of Measurement and Control, Vol. 33, No. 5, pp. 522-541, Jul. 2011.
  22. D. G. Ginoya, P. D. Shendge, and S. B. Phadke, “Sliding mode control for mismatched uncertain systems using an extended disturbance observer,” IEEE Trans. Ind. Electron., Vol. 61, No. 4, pp. 1983-1992, Apr. 2014.
  23. C. J. Xia, X. C. Wang, S. H. Li, and X. S. Chen, “Improved integral sliding mode control methods for speed control of PMSM system,” International Journal of Innovative Computing, Information and Control, Vol. 7, No. 4, pp. 1971-1982, Apr. 2011.
  24. M. Chen and J. Yu, “Disturbance observer-based adaptive sliding mode control for near-space vehicles,” Nonlinear dynamics, Vol. 82, No. 4, pp. 1671-1682, Dec. 2015.
  25. S. H. Li, M. M. Zhou, and X. H. Yu, “Design and implementation of terminal sliding mode control method for PMSM speed regulation system,” IEEE Trans. Ind. Informat., Vol. 9, No. 4, pp. 1879-1891, Nov. 2013.
  26. X. G. Zhang, L. Z. Sun, K. Zhao, and L. Sun, “Nonlinear speed control of PMSM system using sliding-mode control and disturbance compensation techniques,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1358-1365, Mar. 2013.
  27. M.-S. Chen, Y.-R. Hwang, and M. Tomizuka, “A state-dependent boundary layer design for sliding mode control,” IEEE Trans. Autom. Control, Vol. 47, No. 10, pp. 1677-1681, Oct. 2002.
  28. I.-C. Baik, K.-H. Kim, and M.-J. Youn, “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique,” IEEE Trans. Control Syst. Technol., Vol. 8, No. 1, pp. 47-54, Jan. 2000.
  29. Y. Feng, F. L. Han, and X. H. Yu, “Chattering free full-order sliding-mode control,” Automatica, Vol. 50, No. 4, pp. 1310-1314, Apr. 2014.
  30. H. H. Pan, W. C. Sun, H. J. Gao, and J. Y. Yu, “Finite-time stabilization for vehicle active suspension systems with hard constraints,” IEEE Trans. Intell. Transp. Syst., Vol. 16, No. 5, pp. 2663-2672, Oct. 2015.
  31. M. Fliess, J. Lévine, and P. Martin, “Flatness and defect of non-linear systems: introductory theory and examples,” International Journal of Control, Vol. 61, No. 6, pp. 1327-1361, Jan. 1995.
  32. M. Fliess, R. Marquez, E. Delelaleau, and H. Sira-Ramírez, “Conrrecteurs proportionnels-intégraux généralisés,” ESAIM: Control, Optimization and Calculus of Variations, Vol. 7, No. 2, pp. 23-41, Jan. 2002.
  33. H. Sira-Ramírez and M. A. Oliver-Salazar, “On the robust control of buck-converter DC-Motor combinations,” IEEE Trans. Power Electron., Vol. 28, No. 8, pp. 3912-3922, Aug. 2013.
  34. C. Z. Huang and H. Sira-Ramírez, “Flatness-based active disturbance rejection control for linear systems with unknown time-varying coefficients,” International Journal of Control, Vol. 88, No. 12, pp. 1-10, May 2015.
  35. H. M. Wang, S. H. Li, H. R. Zhu, and S. Y. He, "Generalized proportional integral observer based sliding mode control method for PMSM speed regulation system," in Proceeding of the 27th Chinese Control and Decision Conference, pp. 3463-3468, China, May. 2015.
  36. X. D. Li and S. H. Li, “Speed control for a PMSM servo system using model reference adaptive control and an extended state observer,” Journal of Power Electronics, Vol. 14, No. 3, pp. 549-563, May 2014.
  37. E. W. Zurita-Bustamante, J. Linares-Flores, E. Guzmán-Ramírez, and H. Sira-Ramírez, “A comparison between the GPI and PID controllers for the stabilization of a DC-DC “Buck” converter: a field programmable gate array implementation,” IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5251-5262, Nov. 2011.
  38. H. Sira-Ramírea, C. García-Rodríguez, A. Luviano-Juárez, and J. A. Cortés-Romero, Algebraic identification and estimation methods in feedback control systems, John Wiley & Sons, 2014.
  39. H. Sira-Ramírez, J. Linares-Flores, C. García-Rodríguez, and M. A. Contreras-Ordaz, “On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach,” IEEE Trans. Control Syst. Technol., Vol. 22, No. 5, pp. 2056-2063, Sep. 2014.
  40. Estun Automation, Product data sheet,, 2005.
  41. Panasonic, Operating Instructions (Overall), AC Servo Motor & Driver MINAS A5-series, 2009.

Cited by

  1. Finite-time stabilization of port-controlled Hamiltonian systems with nonvanishing disturbances pp.1477-0369, 2017,
  2. Speed regulation of dual-PMSM system under disturbances by composite sliding mode control pp.1793-6640, 2018,
  3. Speed Tracking Control of Permanent Magnet Synchronous Motor by a Novel Two-step Internal Model Control Approach pp.2005-4092, 2018,