DOI QR코드

DOI QR Code

A GEOMETRIC APPROACH TO THE STUDY OF AUTOMORPHISM GROUPS

  • Krantz, Steven G. (Department of Mathematics Washington University in St. Louis)
  • Received : 2015.06.27
  • Published : 2016.07.31

Abstract

In this paper we study questions about automorphism groups of domains in ${\mathbb{C}}^n$, formulating the ideas entirely in terms of metric geometry. We also provide some applications.

References

  1. D. G. Ebin, On the space of Riemannian metrics, Bull. Amer. Math. Soc. 74 (1968), 1001-1003. https://doi.org/10.1090/S0002-9904-1968-12115-9
  2. C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. https://doi.org/10.1007/BF01406845
  3. R. E. Greene, K.-T. Kim, and S. G. Krantz, The Geometry of Complex Domains, Birkhauser, Boston, 2011.
  4. R. E. Greene and S. G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), no. 4, 425-446. https://doi.org/10.1007/BF01457445
  5. R. E. Greene and S. G. Krantz, Deformations of complex structure, estimates for the $\bar{\partial}$-equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), no. 1, 1-86. https://doi.org/10.1016/0001-8708(82)90028-7
  6. R. E. Greene and S. G. Krantz, Characterizations of certain weakly pseudo-convex domains with non-compact automorphism groups, in Complex Analysis Seminar, 121-157, Springer Lecture Notes 1268, 1987.
  7. K.-T. Kim and S. G. Krantz, A Kobayashi metric version of Bun Wong's theorem, Complex Var. Elliptic Equ. 54 (2009), no. 3-4, 355-369. https://doi.org/10.1080/17476930902759429
  8. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970.
  9. S. Kobayashi and K. Nomizu, On automorphisms of a Kahlerian structure, Nagoya Math. J. 11 (1957), 115-124. https://doi.org/10.1017/S0027763000001999
  10. S. G. Krantz, Function Theory of Several Complex Variables, 2nd ed., American Mathematical Society, Providence, RI, 2001.
  11. S. G. Krantz, Convergence of automorphisms and semicontinuity of automorphism groups, Real Anal. Exchange 36 (2010/11), no. 2, 421-433.
  12. L. Lempert, La metrique Kobayashi et las representation des domains sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427-474.
  13. J.-P. Rosay, Sur une characterization de la boule parmi les domains de Cn par son groupe d'automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, 91-97. https://doi.org/10.5802/aif.768
  14. H. Seshadri and K. Verma, On isometries of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. 5 (2006), no. 3, 393-417.
  15. K. Verma, Lecture at BIRS, May, 2006.
  16. B. Wong, Characterizations of the unit ball in $\mathbb{C}^{n}$ by its automorphism group, Invent. Math. 41 (1977), no. 3, 253-257. https://doi.org/10.1007/BF01403050