DOI QR코드

DOI QR Code

A CHARACTERIZATION OF THE UNIT GROUP IN ℤ[T×C2]

  • Bilgin, Tevfik ;
  • Kusmus, Omer ;
  • Low, Richard M.
  • Received : 2015.07.04
  • Published : 2016.07.31

Abstract

Describing the group of units $U({\mathbb{Z}}G)$ of the integral group ring ${\mathbb{Z}}G$, for a finite group G, is a classical and open problem. In this note, we show that $$U_1({\mathbb{Z}}[T{\times}C_2]){\sim_=}[F_{97}{\rtimes}F_5]{\rtimes}[T{\times}C_2]$$, where $T={\langle}a,b:a^6=1,a^3=b^2,ba=a^5b{\rangle}$ and $F_{97}$, $F_5$ are free groups of ranks 97 and 5, respectively.

Keywords

integral group ring;unit problem

References

  1. P. J. Allen and C. Hobby, A characterization of units in $\mathbb{Z}[A_4]$, J. Algebra 66 (1980), no. 2, 534-543. https://doi.org/10.1016/0021-8693(80)90102-7
  2. P. J. Allen and C. Hobby, A characterization of units in $\mathbb{Z}[S_4]$, Comm. Algebra 16 (1988), no. 7, 1479-1505. https://doi.org/10.1080/00927878808823639
  3. T. Bilgin, Characterization of $U_1(\mathbb{Z}C_{12})$, Int. J. Pure Appl. Math. 14 (2004), no. 4, 531-535.
  4. S. Galovich, I. Reiner, and S. Ullom, Class groups for integral representations of metacyclic groups, Mathematika 19 (1972), 105-111. https://doi.org/10.1112/S0025579300005015
  5. G. Higman, Units in Group Rings, D. Phil. Thesis, University of Oxford, Oxford, 1940.
  6. G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940), 231-248.
  7. I. Hughes and K. R. Pearson, The group of units of the integral group ring $\mathbb{Z}S_3$, Canad. Math. Bull. 15 (1972), 529-534. https://doi.org/10.4153/CMB-1972-093-1
  8. E. Jespers, Free normal complements and the unit group of integral group rings, Proc. Amer. Math. Soc. 122 (1994), no. 1, 59-66. https://doi.org/10.1090/S0002-9939-1994-1221725-1
  9. E. Jespers, Bicyclic units in some integral group rings, Canad. Math. Bull. 38 (1995), no. 1, 80-86. https://doi.org/10.4153/CMB-1995-010-4
  10. E. Jespers and M. M. Parmenter, Bicyclic units in $\mathbb{Z}S_3$, Bull. Soc. Math. Belg. Ser. B 44 (1992), no. 2, 141-146.
  11. E. Jespers and M. M. Parmenter, Units of group rings of groups of order 16, Glasgow Math. J. 35 (1993), no. 3, 367-379. https://doi.org/10.1017/S0017089500009952
  12. E. Jespers, A. Pita, A. del Rio, M. Ruiz, and P. Zalesskii, Groups of units of integral group rings commensurable with direct products of free-by-free groups, Adv. Math. 212 (2007), no. 2, 692-722. https://doi.org/10.1016/j.aim.2006.11.005
  13. G. Karpilovsky, Commutative Group Algebras, Marcel Dekker, New York, 1983.
  14. I. G. Kelebek and T. Bilgin, Characterization of $U_1(\mathbb{Z}[C_n\;\times\;K_4])$, Eur. J. Pure Appl. Math. 7 (2014), no. 4, 462-471.
  15. O. Kusmus and I. H. Denizler, Construction of units in $\mathbb{Z}C_{24}$, Int. J. Algebra. 8, 471-477. - preprint.
  16. Y. Li, Units of $\mathbb{Z}(G{\times}C_2)$, Quaestiones Mathematicae 21 (1998), 201-218. https://doi.org/10.1080/16073606.1998.9632041
  17. R. M. Low, Units in Integral Group Rings for Direct Products, Ph.D. Thesis, Western Michigan University, Kalamazoo, MI, 1998.
  18. R. M. Low, On the units of the integral group ring $\mathbb{Z}[G{\times}C_p]$, J. Algebra Appl. 7 (2008), no. 3, 393-403. https://doi.org/10.1142/S0219498808002898
  19. M. M. Parmenter, Torsion-free normal complements in unit groups of integral group rings, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 4, 113-118.
  20. M. M. Parmenter, Free torsion-free normal complements in integral group rings, Commun. Algebra 21 (1993), no. 10, 3611-3617. https://doi.org/10.1080/00927879308824751
  21. D. S. Passman and P. F. Smith, Units in integral group rings, J. Algebra 69 (1981), no. 1, 213-239. https://doi.org/10.1016/0021-8693(81)90139-3
  22. J. Ritter and S. K. Sehgal, Integral group rings of some p-groups, Canad. J. Math. 34 (1982), no. 1, 233-246. https://doi.org/10.4153/CJM-1982-016-5
  23. J. Ritter and S. K. Sehgal, Units of group rings of solvable and Frobenius groups over large rings of cyclotomic integers, J. Algebra 158 (1993), no. 1, 116-129. https://doi.org/10.1006/jabr.1993.1126
  24. S. K. Sehgal, Units in Integral Group Rings, Longman Scientific & Technical, Essex, 1993.