DOI QR코드

DOI QR Code

ON DEGENERATE q-BERNOULLI POLYNOMIALS

  • Kim, Taekyun (Department of Mathematics Kwangwoon University)
  • Received : 2015.07.20
  • Published : 2016.07.31

Abstract

In this paper, we introduce the degenerate Carlitz q-Bernoulli numbers and polynomials and give some interesting identities and properties of these numbers and polynomials which are derived from the generating functions and p-adic integral equations.

References

  1. A. Bayad and T. Kim, Higher recurrences for Apostol-Bernoulli-Euler numbers, Russ. J. Math. Phys. 19 (2012), no. 1, 1-10. https://doi.org/10.1134/S1061920812010013
  2. L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000. https://doi.org/10.1215/S0012-7094-48-01588-9
  3. L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7 (1956), 28-33. https://doi.org/10.1007/BF01900520
  4. L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
  5. J. Choi, T. Kim, and Y. H. Kim, A note on the extended q-Bernoulli numbers and polynomials, Adv. Stud. Contemp. Math. 21 (2011), no. 4, 351-354.
  6. D. Kang, S. J. Lee, J.-W. Park, and S.-H. Rim, On the twisted weak weight q-Bernoulli polynomials and numbers, Proc. Jangjeon Math. Soc. 16 (2013), no. 2, 195-201.
  7. D. S. Kim, N. Lee, J. Na, and K. H. Park, Abundant symmetry for higher-order Bernoulli polynomials (I), Adv. Stud. Contemp. Math. 23 (2013), no. 3, 461-482.
  8. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299.
  9. T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coef- ficients, Russ. J. Math. Phys. 15 (2007), 51-57.
  10. T. Kim, On the weighted q-Bernoulli numbers and polynomials, Adv. Stud. Contemp. Math. 21 (2011), no. 2, 201-2015.
  11. J. W. Park, New approach to q-Bernoulli polynomials with weight or weak weight, Adv. Stud. Contemp. Math. 24 (2014), no. 1, 39-44.
  12. J.-J. Seo, S.-H. Rim, S.-H. Lee, D. V. Dolgy, and T. Kim, q-Bernoulli numbers and polynomials related to p-adic invariant integral on $\mathbb{Z}_p$, Proc. Jangjeon Math. Soc. 16 (2013), no. 3, 321-326.

Cited by

  1. Degenerate Laplace transform and degenerate gamma function vol.24, pp.2, 2017, https://doi.org/10.1134/S1061920817020091
  2. The modified degenerate q-Bernoulli polynomials arising from p-adic invariant integral on Z p $\mathbb{Z}_{p}$ vol.2017, pp.1, 2017, https://doi.org/10.1186/s13662-017-1084-7
  3. On modified degenerate Carlitz q-Bernoulli numbers and polynomials vol.2017, pp.1, 2017, https://doi.org/10.1186/s13662-016-1060-7
  4. A Note on Modified Degenerate Gamma and Laplace Transformation vol.10, pp.10, 2018, https://doi.org/10.3390/sym10100471
  5. -Changhee Polynomials and Numbers vol.2018, pp.1607-887X, 2018, https://doi.org/10.1155/2018/9520269
  6. A note on modified degenerate q-Daehee polynomials and numbers vol.2019, pp.1, 2019, https://doi.org/10.1186/s13660-019-1966-1