DOI QR코드

DOI QR Code

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho (Department of Mathematics Dongguk University)
  • Received : 2015.07.22
  • Published : 2016.07.31

Abstract

We define a new connection on semi-Riemannian manifolds, which is called a symmetric connection of type (${\ell}$, m). Semi-symmetric connection and quarter-symmetric connection are two examples of this connection such that $({\ell},m)=(1,0)$ and $({\ell},m)=(0,1)$ respectively. In this paper, we study lightlike hypersurfaces of an indefinite Kaehler manifold endowed with a symmetric metric connection of type (${\ell}$, m).

References

  1. K. Yano and T. Imai, Quarter-symmetric metric connection and their curvature tensors, Tensor (N.S.) 38 (1982), 13-18.
  2. C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
  3. G. de Rham, Sur la reductibilite d'un espace de Riemannian, Comm. Math. Helv. 26 (1952), 328-344. https://doi.org/10.1007/BF02564308
  4. K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  5. K. L. Duggal and D. H. Jin, Null Curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
  6. K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhauser, 2010.
  7. S. Golab, On semi-symmetric and quarter-symmetric connections, Tensor (N.S.) 29 (1975), no. 3, 249-254.
  8. H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
  9. D. H. Jin, Special lightlike hypersurfaces of indefinite Kaehler manifolds, accepted in Filomat, 2014.
  10. D. Kamilya and U. C. De, Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 26 (1995), no. 1, 29-34.
  11. R. S. Mishra and S. N. Pandey, On quarter-symmetric metric F-connections, Tensor (N.S.) 34 (1980), no. 1, 1-7.
  12. J. Nikic and N. Pusic, A remakable class of natural metric quarter-symmetric connection on a hyperbolic Kaehler space, Conference "Applied Differential Geometry: General Relativity"-Workshop "Global Analysis, Differential Geometry, Lie Algebras", 96-101, BSG Proc., 11, Geom. Balkan Press, Bucharest, 2004.
  13. N. Pusic, On quarter-symmetric metric connections on a hyperbolic Kaehler space, Publ. de l' Inst. Math. 73(87) (2003), 73-80. https://doi.org/10.2298/PIM0373073P
  14. S. C. Rastogi, On quarter-symmetric metric connections, C. R. Acad Sci. Bulgar 31 (1978), no. 7, 811-814.
  15. S. C. Rastogi, On quarter-symmetric metric connections, Tensor (N.S.) 44 (1987), no. 2, 133-141.
  16. K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.