Seismic analysis of dam under different upstream water levels

  • Bhatnagar, Shashank ;
  • Kranthikumar, A ;
  • Sawant, VA
  • Received : 2015.03.18
  • Accepted : 2016.07.15
  • Published : 2016.07.25


The present paper describes the results of numerical modeling of a dam founded on loose liquefiable deposit using PLAXIS-3D finite element software. Effect of a different dam water level on parameters like displacements, Excess Pore water pressures, Liquefaction potential and Accelerations is studied. El- Centro earthquake motion is applied as input earthquake motion. The results of this study show that different upstream dam water level greatly affects the displacements, excess pore pressure and displacement tendency of the underlying foundation soils and the dam.


seismic analysis;earthen dam;excess pore pressure;acceleration;displacements


  1. Adalier, K. and Aydingun, O. (2000), "Liquefaction during the June 27, 1998 Adana-Ceyhan (Turkey) Earthquake", J. Geotech. Geol. Eng., 18(3), 155-174.
  2. Adalier, K., Elgamal, A.W. and Martin, G.R. (1998), "Foundation liquefaction countermeasures for earth embankments", J. Geotech. Geoenviron. Eng., ASCE, 124(6), 500-517.
  3. Brinkgreve, R.B.J., Engin, E. and Swolfs, W.M. (2012), PLAXIS, Finite Element code for soil and rock analysis, user's manual.
  4. Cubrinovski, M. and Ishihara, K. (1999), "Empirical correlation between SPT N-value and relative density for sandy soils", Soils and Foundations, Elsevier, 39(5), 61-71.
  5. Dewoolkar, M.M., Chan, A.H.C., Ko, H. and Pak, R.Y.S. (2009), "Finite element simulations of seismic effects on retaining walls with liquefiable backfills", Int. J. Numer. Analytic. Meth. Geomech., 33(6), 791-816.
  6. Galavi, V., Petalas, A. and Brinkgreve, R.B.J. (2013), "Finite element modelling of seismic liquefaction in soils", Geotech. Eng. J., 44(3), 55-64.
  7. Latha, G.M., Dash, S. and Rajagopal, K. (2009), "Numerical simulation of the behavior of geocell reinforced sand in foundations", Int. J. Geomech., ASCE, 9(4), 143-152.
  8. Maheshwari, B.K., Singh, H.P and Saran, Swami (2012), "Effects of reinforcement on liquefaction resistance of solani sand", J. Geotech. Geoenviron. Eng., ASCE, 138(7), 831-840.
  9. Marcuson, W.F., Hadala, P.F. and Ledbetter, R.H. (1996), "Seismic rehabilitation of earth dams", J. Geotech. Eng., ASCE, 122(1), 7-20.
  10. McCulloch, D.S. and Bonilla, M.G. (1967), "Railroad damage in the Alaska Earthquake", J. Geotech. Eng. Div., ASCE, 93(5), 89-100.
  11. Puebla, H., Byrne, P.M. and Phillips, P. (1997), "Analysis of canlex liquefaction embankments prototype and centrifuge models", Can. Geotech. J., 34(5), 641-657.
  12. Taiebat, M., Shahir, H. and Pak, A. (2007), "Study of pore pressure variation during liquefaction using two constitutive models for sand", Soil Dyn. Earthq. Eng., 27(1), 60-72.
  13. Taiyab, M.A., Alam, M.J. and Abedin, M.Z. (2014), "Dynamic soil-structure interaction of a gravity quay wall and the effect of densification in liquefiable sites", Int. J. Geomech., ASCE, 14(1), 20-33.
  14. Yamada, G. (1966), "Damage to earth structures and foundations by the Niigata Earthquake, June 16, 1964", Soil. Found., 6(1), 1-13.