Chemical Properties and Fiber Dimension of Eucalyptus pellita from The 2nd Generation of Progeny Tests in Pelaihari, South Borneo, Indonesia

  • Lukmandaru, Ganis ;
  • Zumaini, Umi Farah ;
  • Soeprijadi, Djoko ;
  • Nugroho, Widyanto Dwi ;
  • Susanto, Mudji
  • Received : 2015.12.11
  • Accepted : 2016.07.11
  • Published : 2016.07.25


Eucalyptus pellita F. Muell is one of pulp woods that is being developed through breeding plantation programs in Indonesia. The research aimed at exploring the chemical and morphological characteristics of fiber, and to determine the rank of plus trees from 4 provenances based on the suitability for pulps. The materials included the plus trees of E. pellita (9 years) from the 2nd generation of progeny tests in Pelaihari, South Borneo. Wood properties under investigation included the chemical properties and morphological fiber characteristics (fiber dimensions and its derived properties). In the present study, data were analyzed using descriptive statistic, Analytic Hierarchy Process (AHP) and Pearson's correlation. Results showed that the chemical properties of E. pellita, i.e. the contents of ethanol-toluene extractives, hot water soluble extractives, holocellulose, alphacelullose, and lignin were $3.08{\pm}1.00%$, $1.41{\pm}0.38%$, $75.26{\pm}2.58%$, $49.02{\pm}2.88%$, and $29.49{\pm}1.86%$, respectively. The average values of wood fiber morphology were $1.02{\pm}0.08$ mm (fiber length), $13.25{\pm}1.64{\mu}m$ (fiber diameter), of $6.94{\pm}1.70{\mu}m$ (lumen diameter), $3.15{\pm}0.52{\mu}m$ (fiber wall thickness), $0.97{\pm}0.30$ (Runkel ratio), $0.57{\pm}0.10$ (Luce's shape factor), $78.21{\pm}10.34$ (slenderness ratio) and $130.91{\pm}33.77{\times}10^3{\mu}m^3$ (solids factor). The AHP scoring rank indicated that the best individuals were (Kiriwo Utara), (North Kiriwo), (Serisa Village), (South Kiriwo), and (South Kiriwo). Pearson correlation analysis showed significant correlations between the levels of fiber length with alpha-cellulose content (r = 0.39) as well as the fiber length with ethanol-toluene extractive contents (r = -0.41).


Eucalyptus pellita;chemical properties;fiber morphology;Analytic Hierarchy Process;progeny test


  1. Aguayo, M.G., Mendonca, R.T., Martinez, P., Rodriguez, J., Pereira, M. 2012. Chemical characteristics and kraft pulping of tension wood from Eucalyptus globulus Labill. Revista Arvore, Vicosa-MG 36(6): 1163-1171.
  2. Apiolaza, A., Raymond, C.A., Yeo, B.J. 2005. Genetic variation of physical and chemical wood properties of Eucalyptus globulus. Silvae Genetica 54(4-5): 160-166.
  3. ASTM. 2002. Annual Book of ASTM Standards. Section 4. Construction. ASTM International. USA.
  4. Bamber, R.K. 1985. The wood anatomy of eucalypts and paper-making. Appita 38(3): 210-216.
  5. Browning, B.L. 1967. Methods of Wood Chemistry II. Wisconsin Interscience. New York.
  6. Copur, Y., Makkonen, H., Amidon, T.E. 2005. The prediction of pulp yield using selected fiber properties. Holzforschung 59(5): 477-480.
  7. Dutt, D., Tyagi, C.H. 2011. Comparison of various Eucalyptus species for their morphology, chemical, pulp, and paper making characteristics. Indian Journal of Chemical Technology 18(2): 145-151.
  8. Evtuguin, D.V., Neto, C.P. 2007. Recent Advances in Eucalyptus Wood Chemistry: Structural Features through the Prism of Technological Response. Research Report Department of Chemistry, University of Aveiro. Portugal.
  9. Haroen, W.K., Dimyati, F. 2006. Property of tension wood, heartwood and sapwood Acacia mangium to pulp characteristic. Berita Selulosa 41(1): 1-7. In Indonesian.
  10. Harwood, C.E., Alloysius, D., Pomroy, P., Robson, K.W., Haines, M.W. 1997. Early growth and survival of E. pellita provenances in a range of tropical environment, compared with E. grandis, E. urophylla and A. mangium. New Forests 14(3): 203-219.
  11. Horn, R.A. 1978. Morphology of pulp fiber from hardwoods and influence on paper strength. Research Paper Forest Products Laboratory. United States Department of Agriculture. Wisconsin.
  12. IAWA Committee. 1989. List of microscopic featuresfor hardwood identification. InternationalAssociation of Wood Anatomists (IAWA),Leiden, The Netherlands. IAWA Bulletin 10(3):201-232.
  13. Igarza, U.O., Machado, E.C., Diaz, N.P., Martin, R.G. 2006. Chemical composition of bark of three species of eucalyptus to three heights of commercial bole : part 2 Eucalyptus pellita F. Muell. Revista Forestal Venezolana 50(1): 53-58.
  14. Irianto, R.S.B., Barry, K., Hidayati, N., Ito, S., Fiani, A., Rimbawanto, A., Mohammed, C. 2006. Incidence and spatial analysis of root rot of Acacia mangium in Indonesia. Journal of Tropical Forest Science 18(3): 157-165.
  15. ITTO. 2006. Guide on utilization of eucalyptus and acacia plantations in China for solid wood products. Technical Report. ITTO Project PD 69/01 Rev. 2 (I). Research Institute of Wood Industry Chies Academy of Forestry. China.
  16. Kiaei, M. 2012. The influence of cambial age on fiber dimension in Maple wood. Middle-East Journal Science Research 11(8): 1009-1012.
  17. Kien, N.D., Jansson, G., Harwood, C., Thinh, H.H., 2009. Genetic control of growth and form in Eucalyptus urophylla in northern Vietnam. Journal of Tropical Forest Science 21(1): 50-65.
  18. Kube, P.D., Raymond, C.A., 2002. Prediction of whole-tree basic density and pulp yield using wood core samples in Eucalyptus nitens. Appita 55(1): 43-48.
  19. Kuzman, M.K., Groselj, P. 2012. Wood as a construction material: comparison of different construction types for residential building using the analytic hierarchy process. Wood Research 57(4): 591-600.
  20. Leksono, B., Kurinobu, S., Ide, Y. 2008. Realized genetic gains observed in second generation seedling seed orchards of E. pellita in Indonesia. Journal of Forest Research 13(2): 110-116.
  21. Markussen, T., Fladung, M., Achere, V., Favre, J.M., Faivre-Rampant, P., Aragones, A., Da Silva Perez, D., Harvengt, L., Espinel, S., Ritter, E. 2003. Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait.) Silvae Genetica 52(1): 8-15.
  22. Marsoem, S.N., Sulistyo, J., Prasetyo, V.E., Andhini, Y., Setiaji, F. 2012. Maintaining environmental quality: Fiber characterization as a tool for verifying pulp fiber composition. Paper Conference and Trade Show 2012: Growing the Future-Co-located with Control Systems 2012, 733-742.
  23. Moorthy, K.S., Kishore, H., Chand, S. 1985. Pulping and papermaking characteristics of fast growing species. Research Report 12: 1-23.
  24. Myllyviita, T., Leskinen, P., Lahtinen, K., Pasanen, K., Sironen, S., Kahkoen, T., Sikanen, L. 2013. Sustainability assessment of wood-based bioenergy : A methodological framework and a case-study. Biomass and Bioenergy 59: 293-299.
  25. Nugroho, W.D., Marsoem, S.N., Yosue, K., Fujiwara, T., Nakajima, T., Hayakawa, M., Nakaba, S., Yamagishi, Y., Jin, H., Kubo, T., Funada, R. 2012. Radial variations in the anatomical characteristics and density of the wood of Acacia mangium of five different provenances in Indonesia. Journal Wood Science 58(3): 185-194.
  26. Oliveira, A.C., Carneiro, A.C.O., Vital, B.R., Almeide, W., Pereira, B.L.C., Cardoso, M.T. 2010. Quality parameters of Eucalyptus pellita F. Muell. wood and charcoal. Science Forest Piracicaba 38(87): 431-439.
  27. Ona, T., Sonoda, T., Ito, K., Shibata, M., Tamai, Y., Kojima, Y., Ohshima, J., Yokota, S., Yoshizawa, N. 2001. Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree variations. Wood and Science Technology 35(3): 229-243.
  28. Oshima, J., Yokota, S., Yoshizawa, N., Ona, T. 2005. Examination of within-tree variations and the heights representing whole-tree values of derived wood properties for quasi-non-destructive breeding of Eucalyptus camaldulensis and Eucalyptus globulus as quality pulpwood. Journal of Wood Science 51(2): 102-111.
  29. Poubel, D.S., Garcia, R.A., Latorraca, J.V.F., Carvalho, A.M. 2011. Anatomical structure and physical properties of Eucalyptus pellita F. Muell. Floresta e Ambiente 18(2): 117-126.
  30. Ramirez, M., Rodriguez, J., Peredo, M., Valenzuela, S., Mendonca, R. 2009. Wood anatomy and biometric parameters variation of Eucalyptus globulus clones. Wood and Science Technology 43(1): 131-141.
  31. Saaty, T.L. 1980. The analytic hierarchy process. McGraw Hill, New York.
  32. Sharma, A.K., Dutt, D., Upadhyaya, J.S., Roy, T.K. 2011. Anatomical, morphological, and chemical characterization of Bambusa tulda, Dendrocalamus hamiltonii, Bambusa balcooa, Malocana baccifera, Bambusa arundinacea, and Eucalyptus tereticornis. BioResources 6(4): 5062-5073.
  33. Sharma, M., Sharma, C.L., Kumar, Y.B. 2013. Evaluation of fiber characteristics in some weeds of Arunachal Pradesh, India for pulp and paper making. Research Journal of Agriculture and Forestry Science 1(3): 15-21.
  34. Shmulsky, R., Jones, P.D. 2011. Forest Products and Wood Science: An Introduction, Sixth Edition. John Wiley & Sons, Inc.
  35. Smith, R., Bush, J.R., Schmoldt, L.D. 1995. A hierarchical model and analysis of factors affecting the adoption of timber as a bridge material. Wood and Fiber Science 27(3): 225-238.
  36. Sjostrom, E. 1992. Wood chemistry: Fundamentals and Applications. Academic Press Inc., San Diego.
  37. Susilawati, S., Fujisawa, Y. 2002. Family variation on wood density and fiber length of eucalyptus in seedling seed orchard Pelaihari, South Kalimantan. Advances in Genetics Improvement of Tropical Trees Species. Proceedings Centre for Forest Biotechnology and Tree Improvement. Yogyakarta, 53-56 pp.
  38. Susilawati, S., Marsoem, S.N. 2006. Variation in wood physical properties of Eucalyptus pellita growing in seedling seed orchard in Pelaihari, South Kalimantan. Journal of Forestry Research 3(2): 123-138.
  39. Tsoumis, G. 1991. Science and Technology of Wood Structure Properties: Utilization. van Hostrand Reinhold. New York.
  40. Wallis, A.F.A., Wearne, R.H., Wright, P.J. 1996. Analytical characteristics of plantation eucalyptwoods relating of kraft pulp yields. Appita 49(6): 427-432.
  41. Wimmer, R., Downes, G.M., Evans, R., Rasmussen, G., French, J. 2002. Direct effects of wood characteristics on pulp and handsheet properties of Eucalyptus globulus. Holzforschung 56(3): 244-252.
  42. Wimmer, R., Downes, G., Evans, R., French, J. 2008. Effects of site on fibre, kraft pulp and handsheet properties of Eucalyptus globulus. Annals of Forest Science 65(6): 602.
  43. Saaty, T.L. 2000. Decision Making for Leaders. RWS Publications, Pittsburgh, PA.