DOI QR코드

DOI QR Code

INT-SOFT FILTERS IN LATTICE IMPLICATION ALGEBRAS

  • Jun, Young Bae (Department of Mathematics Education Gyeongsang National University) ;
  • Xu, Yang (Department of Applied Mathematics Southwest Jiaotong University) ;
  • Zhang, Xiaohong (Department of Mathematics College of Arts and Sciences Shanghai Maritime University)
  • Received : 2015.09.23
  • Published : 2016.09.30

Abstract

The notion of int-soft (implicative) filters in lattice implication algebras is introduced, and related properties are investigated. Characterizations of int-soft (implicative) filters are discussed. Conditions for an int-soft filter to be an int-soft implicative filter are provided. Extension property for int-soft implicative filters is established.

References

  1. U. Acar, F. Koyuncu, and B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010), no. 11, 3458-3463. https://doi.org/10.1016/j.camwa.2010.03.034
  2. H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007), no. 13, 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
  3. A. O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (2011), no. 3, 592-601. https://doi.org/10.1016/j.camwa.2010.12.005
  4. L. Bolc and P. Borowik, Many-Valued Logic, Springer, Berlin, 1992.
  5. N. Cagman, F. Citak, and S. Enginoglu, Soft set theory and uni-int decision making, European J. Oper. Res. 207 (2010), no. 2 848-855. https://doi.org/10.1016/j.ejor.2010.05.004
  6. N. Cagman and S. Enginoglu, FP-soft set theory and its applications, Ann. Fuzzy Math. Inform. 2 (2011), no. 2, 219-226.
  7. D. Chen, E. C. C. Tsang, D. S. Yeung, and X. Wang, The parametrization reduction of soft sets and its applications, Comput. Math. Appl. 49 (2005), 757-763. https://doi.org/10.1016/j.camwa.2004.10.036
  8. F. Feng, Soft rough sets applied to multicriteria group decision making, Ann. Fuzzy Math. Inform. 2 (2011), no. 1, 69-80.
  9. F. Feng, Y. B. Jun, and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008), no. 10, 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011
  10. J. A. Goguen, The logic of inexact concepts, Synthese 19 (1969), 325-373. https://doi.org/10.1007/BF00485654
  11. Y. B. Jun, Implicative filters of lattice implication algebras, Bull. Korean Math. Soc. 34 (1997), no. 2, 193-198.
  12. Y. B. Jun, Fuzzy positive implicative and fuzzy associative filters of lattice implication algebras, Fuzzy Sets and Systems 121 (2001), no. 2, 353-357. https://doi.org/10.1016/S0165-0114(00)00030-0
  13. Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008), no. 5, 1408-1413. https://doi.org/10.1016/j.camwa.2008.02.035
  14. Y. B. Jun, H. S. Kim, and J. Neggers, Pseudo d-algebras, Inform. Sci. 179 (2009), no. 11, 1751-1759. https://doi.org/10.1016/j.ins.2009.01.021
  15. Y. B. Jun, K. J. Lee, and A. Khan, Soft ordered semigroups, MLQ Math. Log. Q. 56 (2010), no. 1, 42-50. https://doi.org/10.1002/malq.200810030
  16. Y. B. Jun, K. J. Lee, and C. H. Park, Soft set theory applied to ideals in d-algebras, Comput. Math. Appl. 57 (2009), no. 3, 367-378. https://doi.org/10.1016/j.camwa.2008.11.002
  17. Y. B. Jun, K. J. Lee, and J. Zhan, Soft p-ideals of soft BCI-algebras, Comput. Math. Appl. 58 (2009), no. 10, 2060-2068. https://doi.org/10.1016/j.camwa.2009.07.072
  18. Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci. 178 (2008), no. 11, 2466-2475. https://doi.org/10.1016/j.ins.2008.01.017
  19. Y. B. Jun, Y. Xu, and K. Y. Qin, Positive implicative and associative filters of lattice implication algebras, Bull. Korean Math. Soc. 35 (1998), no. 1, 53-61.
  20. P. K. Maji, R. Biswas, and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003), no. 4-5, 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
  21. P. K. Maji, A. R. Roy, and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002), no 8-9, 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  22. D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37 (1999), no. 4-5, 19-31.
  23. V. Novak, First order fuzzy logic, Studia Logica 46 (1987), no. 1, 87-109. https://doi.org/10.1007/BF00396907
  24. C. H. Park, Y. B. Jun, and M. A. Ozturk, Soft WS-algebras, Commun. Korean Math. Soc. 23 (2008), no. 3, 313-324. https://doi.org/10.4134/CKMS.2008.23.3.313
  25. J. Pavelka, On fuzzy logic I, II, III, Z. Math. Logik Grundlag. Math. 25 (1979), 45-52, 119-134, 447-464. https://doi.org/10.1002/malq.19790250304
  26. Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. 1 (1993), 20-27.
  27. Y. Xu and K. Y. Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1 (1993), no. 2, 251-260.
  28. Y. Xu and K. Y. Qin, Fuzzy lattice implication algebras, J. Southwest Jiaotong University 30 (1995), no. 2, 121-127.
  29. Y. Xu, D. Ruan, K. Y. Qin, and J. Liu, Lattice-Valued Logic, Springer-Verlag, Berlin, Heidelberg 2003.
  30. J. Zhan and Y. B. Jun, Soft BL-algebras based on fuzzy sets, Comput. Math. Appl. 59 (2010), no. 6, 2037-2046. https://doi.org/10.1016/j.camwa.2009.12.008