Mosquito Control Efficacy of a BtPlus Insecticide and Its Safety Assessment to Aquatic Environment

비티플러스 살충제의 모기 방제 효과 및 환경생물에 대한 안전성 평가

  • 박영진 (안동대학교 식물의학과) ;
  • 유성민 ((주)경농 중앙연구소) ;
  • 권보원 ((주)경농 중앙연구소) ;
  • 박찬 ((주)경농 중앙연구소) ;
  • 김진 ((주)경농 중앙연구소) ;
  • 김용균 (안동대학교 식물의학과)
  • Received : 2016.06.25
  • Accepted : 2016.09.11
  • Published : 2016.09.30


BtPlus is a group of biopesticides that are made of Bacillus thuringiensis and immunosuppressant. A new BtPlus that exhibits high insecticidal activity against mosquito larvae has been investigated in control efficacy in field conditions and its environmental safety against aquatic system. This study assessed the control efficacy of BtPlus against mosquito larvae with two different application methods. In aerial spraying application (100 mL per $3.3m^2$), BtPlus was effective at 50% or above formulation concentrations to control mosquito larvae. For a direct application to aqueous mosquito habitat, a semi-field mimicking paddy rice field was constructed. In this condition, BtPlus showed 80% and 100% control efficacies at 0.1% and 0.2% concentrations, respectively. BtPlus also showed 40% mortality against adults at 0.1% concentration in 10% sugar bait. However, its control efficacies against adults were much less than against larvae. Safety assessment of BtPlus against ecosystem was evaluated using young carp (Cyprinus carpio), a water flea (Daphnia magna), and a honey bee (Apis mellifera). BtPlus did not give any adverse effects on these nontarget organisms. Based on these results, BtPlus can be applied to control mosquitoes by direct aqueous application to paddy rice field.


Supported by : 농림수산식품기술평가원, 한국연구재단


  1. Ahn, Y. (2011) Evaluation of insecticide resistance of vector mosquitoes. Seoul National University, Seoul, Korea.
  2. Bravo, A., S. Likitvivatanavong, S. S. Gill and M. Soberon (2011) Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41:423-431.
  3. Choi, S. Y., S. C. Oh, M. S. Cho, S. K. Paek, J. S. Kim, D. A. Kim, M. R. Gill, Y. N. Youn and Y. M. Yu (2007) Bioassay of environment-friendly insecticides for management of mosquito, Culex pipiens molestus. Kor. J. Appl. Entomol. 46:261-267.
  4. Hoffmann, J. A. (1995) Innate immunity of insects. Curr. Opin. Immunol. 7:4-10.
  5. Jeong, Y. S. and D. K. Lee (2003) Prevalence and seasonal abundance of the dominant mosquito species in a large march near coast of Ulsan. Kor. J. Appl. Entomol. 42:125-132.
  6. Kang, S. H., S. A. Jang, J. B. Han, D. K. Seo, C. H. Song, M. K. Kim, Y. L. Kim, S. H. Choi, I. K. Kim and G. H. Kim (2005) Comparative efficacy of mosquito repellents against Aedes albopictus (Diptera: Culicidae). Kor. J. Appl. Entomol. 44:243-249.
  7. Kil, M. R., D. A. Kim, S. K. Paek, J. S. Kim, S. Y. Choi, D. Y. Jin and Y. N. Yu (2008) Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 isolate against mosquito larva. Kor. J. Appl. Entomol. 47:457-465.
  8. Kim, E., S. Jeoung, Y. Park, K. Kim and Y. Kim (2015) Novel formulation of Bacillus thuringiensis for the control of brassica leaf beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). J. Econ. Entomol. 108:2556-2565.
  9. Kim, Y. K., C. M. Lee, J. B. Lee and S. B. Bae (2012a) Seasonal prevalence of mosquitoes and ecological characteristics of Anopheline larval occurrence in Gimpo, Gyeonggi Province, Republic of Korea. Kor. J. Appl. Entomol. 51:305-312.
  10. Kim, S. K., Y. Flores-Lara and P. S. Stock (2012b) Morphology and ultrastructure of the bacterial receptacle in Steinernema nematodes (Nematoda: Steinernematidae). J. Invertebr. Pathol. 110:366-374.
  11. Kim, Y, D. Ji, S. Cho and Y. Park (2005) Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89:258-264.
  12. Kim, H. C., K. W. Lee, R. S. Richards, S. S. Schleich, W. E. Herman and T. A. Klein (2003) Seasonal prevalence of mosquitoes collected from light traps in Korea (1999-2000). Kor. J. Entomol. 33:9-16.
  13. Kudom, A. A. (2015) Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control. Malar. J. 14:447.
  14. Lee, W. J. and D. K. Lee (2004) Laboratory assessment of a formulated Bacillus thuringiensis var. israelensis against five medically important species of mosquito larvae in Republic of Kor. J. Asia Pac. Entomol. 7:133-136.
  15. Lima, E. P., M. O. Goulart and M. L. Rolim Neto (2015) Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti. BMC Public Health 15:858.
  16. Park, Y. and Y. Kim (2000) Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46:1469-1476.
  17. Park, Y., S. Kumar, R. Kanumuri, D. Stanley and Y. Kim (2015) A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth. Insect Biochem. Mol. Biol. 66:13-23.
  18. Park, Y. (2015) Entomopathogenic bacterium, Xenorhabdus nematophila and Photorhabdus luminescens, enhances Bacillus thuringiensis Cry4Ba toxicity against yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). J. Asia Pac. Entomol. 18:459-463.
  19. Park, Y., J. K. Jung and Y. Kim (2016) A mixture of Bacillus thuringiensis subsp. israelensis with Xenorhabdus nematophila-cultured broth enhances toxicity against mosquitoes Aedes albopictus and Culex pipiens pallens (Diptera: Culicidae). J. Econ. Entomol. In printed.
  20. SAS Institute, Inc. (1989) SAS/STAT User's Guide, release 6.03 Ed. SAS Institute, Cary, NC.
  21. Seo, S., S. Lee, Y. Hong and Y. Kim (2012) Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78:3816-3823.
  22. Seo, S. and Y. Kim (2011) Development of "Bt-Plus" biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50:171-178.
  23. Seo, M. J., Y. J. Gil, T. H. Kim, H. J. Kim, Y. N. Youn and Y. M. Yu (2010) Control effects against mosquitoes larva of Bacillus thuringiensis subsp. israelensis CAB199 isolate according to different formulations. Kor. J. Appl. Entomol. 49:151-158.
  24. Shrestha, S., Y. Hong and Y. Kim (2010) Two chemical derivatives of bacterial metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13:55-60.
  25. Schaloske, R. H. and E. A. Dennis (2006) The phospholipase $A_2$ superfamily and its group numbering system. Biochimica et Biophysica Acta 1761:1246-1259.
  26. Stanley, D. and Y. Kim (2014) Eicosanoid signaling in insects: from discovery to plant protection. Crit. Rev. Plant Sci. 33:20-63.
  27. Stokes, B. A., S. Yadav, U. Shokal, L. C. Smith and I. Eleftherianos (2015) Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Front. Microbiol. 6: 19. doi: 10.3389/fmicb.2015.00019.
  28. U.S. Environmental Protection Agency (1991) Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. 4th Ed. USEPA, Cincinnati, OH.
  29. Wang, Z. Q., H. Perumaisamy, M. Wang, S. Shu and Y. J. Ahn (2016) Larvicidal activity of Magnolia denudata seed hydrodistillate constituents and related compounds and liquid formulations towards two susceptible and two wild mosquito species. Pest Manag. Sci. 72:897-906.
  30. Yu, H. S. and H. C. Kim (1989) Integrated control of vector mosquitoes with native fishes (Aplocheilus and Aphyocypris) and Bacillus thuringiensis (H-14) in natural rice fields of Korea. Kor. J. Appl. Entomol. 28:167-174.