DOI QR코드

DOI QR Code

Catalytic Activity of BiVO4-graphene Nanocomposites for the Reduction of Nitrophenols and the Photocatalytic Degradation of Organic Dyes

  • Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Jeong Won (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2016.09.05
  • Accepted : 2016.09.19
  • Published : 2016.09.30

Abstract

$BiVO_4$ nanomaterial was synthesized from bismuth (III) nitrate pentahydrate [$Bi(NO_3)_3{\cdot}5H_2O$] and ammonium vanadate (V) [$NH_4VO_3$]. The $BiVO_4$-graphene nanocomposite was fabricated by calcining the $BiVO_4$ nanomaterial and graphene under an oxygen-free atmosphere at $700^{\circ}C$. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize structural and morphological properties of samples. The catalytic activity of the $BiVO_4$-graphene nanocomposite was studied for the reduction of 4-nitrophenol, 3-nitrophenol and 2-nitrophenol by sodium borohydride [$NaBH_4$]. The photocatalytic activity of the $BiVO_4$-graphene nanocomposite was demonstrated by the degradation of organic dyes like BG, MB, MO and RhB under irradiation at 365 nm. The catalytic and photocatalytic activity were studied by UV-vis spectrophotometry.

Acknowledgement

Supported by : Sahmyook University

References

  1. A. Goyal, S. Bansal, and S. Singhal, "Facile Reduction of Nitrophenols: Comparative Catalytic Efficiency of $MFe_2O_4$ (M = Ni, Cu, Zn) Nano Ferrites", Int. J. Hydrogen Energ., 39, 4895 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.050
  2. H. Liu, T. Lv, X. H. Wu, C. K. Zhu, and Z. F. Zhu, "Preparation and Enhanced Photocatalytic Activity of CdS@RGO Core-Shell Structural Microspheres", Appl. Sulf. Sci., 305, 242 (2014). https://doi.org/10.1016/j.apsusc.2014.03.045
  3. S. Ameen, M. S. Akhtar, M. Nazim, and H. S. Shin, "Rapid Photocatalytic Degradation of Crystal Violet Dye over ZnO Flower Nanomaterials", Mater. Lett., 96, 228 (2013). https://doi.org/10.1016/j.matlet.2013.01.034
  4. A. Niaz, J. Fischer, J. Barek, B. Yosypchuk, Sirajuddin, and M.I. Bhanger, "Voltammetric Determination of 4-Nitrophenol Using a Novel Type of Silver Amalgam Paste Electrode", Electroanal., 21, 1786 (2009). https://doi.org/10.1002/elan.200904622
  5. S. Saha, A. Pal, S. Kundu, S. Basu, and T. Pal, "Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction", Langmuir 26, 2885 (2010). https://doi.org/10.1021/la902950x
  6. C. V. Rode, M. J. Vaidya, and R. V. Chaudhari, "Synthesis of p-Aminophenol by Catalytic Hydrogenation of Nitrobenzene", Org. Process Res. Dev., 3, 465 (1999). https://doi.org/10.1021/op990040r
  7. V. K. Gupta, M. L. Yola, T. Eren, F. Kartal, M. O. Caglayan, and N. Atar, "Catalytic Activity of Fe@Ag Nanoparticle Involved Calcium Alginate Beads for the Reduction of Nitrophenols", J. Mol. Liq., 190, 133 (2014). https://doi.org/10.1016/j.molliq.2013.10.022
  8. K. S. Shin, Y. K. Cho, J. Y. Choi, and K. Kim, "Facile Synthesis of Silver-deposited Silanized Magnetite Nanoparticles and Their Application for Catalytic Reduction of Nitrophenols", Appl. Catal. A: Gen., 413, 170 (2012).
  9. M. Haruta and M. Date, "Advances in the Catalysis of Au Nanoparticles", Appl. Catal. A: Gen., 222, 427 (2001). https://doi.org/10.1016/S0926-860X(01)00847-X
  10. X. M. Gao, F. Fu, and W. H. Li, "Photocatalytic Degradation of Phenol over Cu Loading $BiVO_4$ Metal Composite Oxides under Visible Light Irradiation", Phys. B., 412, 26 (2013). https://doi.org/10.1016/j.physb.2012.12.023
  11. S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, "Bimetallic Pt-Ni Nanoparticles Can Catalyze Reduction of Aromatic Nitro Compounds by Sodium Borohydride in Aqueous Solution", Appl. Catal. A: Gen., 268, 61 (2004). https://doi.org/10.1016/j.apcata.2004.03.017
  12. W. R. Zhao, Y. Wang, Y. Yang, J. Tang, and Y. N. Yang, "Carbon Spheres Supported Visible-Light-Driven CuO-$BiVO_4$ Heterojunction: Preparation, Characterization, and Photocatalytic Propertie", Appl. Catal. B: Environ., 115, 90 (2012).
  13. W. Zhang, X. Xiao, L. Zheng, and C. Wan, "Fabrication of $TiO_{2}/MoS_{2}@zeolite$ Photocatalyst and its Photocatalytic Activity for Degradation of Methyl Orange under Visible Light", Appl. Surf. Sci., 358, 468 (2015). https://doi.org/10.1016/j.apsusc.2015.08.054
  14. L. Zhang, M. S. Tse, and O. K. Tan, "Controlled Deposition and Enhanced Visible Light Photocatalytic Performance of Pt-Modified $TiO_2$ Nanotube Arrays", J. Environ. Chem. Eng., 2, 1214 (2014). https://doi.org/10.1016/j.jece.2014.05.006
  15. G. Xiao, X. Zhang, W. Y. Zhang, S. Zhang, H. J. Su, and T. W. Tan, "Visible-Light-Mediated Synergistic Photocatalytic Antimicrobial Effects and Mechanism of Ag-Nanoparticles@chitosan-$TiO_2$ Organic-Inorganic Composites for Water Disinfection", Appl. Catal. B: Environ., 170, 255 (2015).
  16. T. Arai, M. Yanagida, Y. Konishi, A. Ikura, Y. Iwasaki, H. Sugihara, and K. Sayama, "The Enhancement of $WO_3$-Catalyzed Photodegradation of Organic Substances Utilizing the Redox Cycle of Copper Ions", Appl. Catal. B, 84, 42 (2008). https://doi.org/10.1016/j.apcatb.2008.03.002
  17. A. Duret and M. Gratzel, "Visible Light-Induced Water Oxidation on Mesoscopic ${\alpha}-Fe_2O_3$ Films Made by Ultrasonic Spray Pyrolysis", J. Phys. Chem. B, 109, 17184 (2005). https://doi.org/10.1021/jp044127c
  18. T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, and J. P. Jolive, "$Bi_2O_3,\;BiVO_4,\;and\;Bi_2WO_6$: Impact of Surface Properties on Photocatalytic Activity under Visible Light", J. Phys. Chem. C, 115, 5657 (2011). https://doi.org/10.1021/jp109134z
  19. Q. Yu, Z. R. Tang, and Y. J. Xu., "Synthesis of $BiVO_4$ NanoSheets-Graphene Composites Toward Improved Visible Light Photoactivity", J. Energy Chem., 23, 564 (2014). https://doi.org/10.1016/S2095-4956(14)60186-8
  20. J. Xu, W. Wang, J. Wang, and Y. Liang, "Controlled Fabrication and Enhanced Photocatalystic Performance of $BiVO_4@CeO_2$ Hollow Microspheres for the Visible-Light-Driven Degradation of Rhodamine B", Appl. Surf. Sci., 349, 529 (2015). https://doi.org/10.1016/j.apsusc.2015.04.195
  21. M. Niu, R. Zhu, F. Tian, K. Song, G. Cao, and F. Ouyang, "The Effects of Precursors and Loading of Carbon on the Photocatalytic Activity of C-$BiVO_4$ for the Degradation of High Concentrations of Phenol under Visible Light Irradiation", Catal. Tod., 258, 585 (2015). https://doi.org/10.1016/j.cattod.2015.04.005
  22. H. M. Fan, T. F. Jiang, H. Y. Li, D. J. Wang, L. L. Wang, J. L. Zhai, D. Q. He, P. Wang, and T. F. Xie, "Effect of $BiVO_4$ Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity", J. Phys. Chem. C, 116, 2425 (2012). https://doi.org/10.1021/jp206798d
  23. S. Kohtani, M. Tomohiro, K. Tokumura, and R. Nakagaki, "Photooxidation Reactions of Polycyclic Aromatic Hydrocarbons over Pure and Ag-Loaded $BiVO_4$ Photocatalysts", Appl. Catal. B: Environ., 58, 265 (2005). https://doi.org/10.1016/j.apcatb.2004.12.007
  24. M. Wang, C. Niu, J. Liu, Q. Wang, C. Yang, and H. Zheng, "Characterization and Photocatalytic Properties of N-Doped $BiVO_4$ Synthesized via a Sol-Gel Method", J. Alloys Comp., 548, 70 (2013). https://doi.org/10.1016/j.jallcom.2012.08.140
  25. S. W. Cao, Z. Yin, J. Barber, F. Y. C. Boey, S. C. J. Loo, and C. Xue, "Preparation of Au-$BiVO_4$ Heterogeneous Nanostructures as Highly Efficient Visible-Light Photocatalysts", ACS Appl. Mater. Interfaces, 4, 418 (2012). https://doi.org/10.1021/am201481b
  26. N. Wetchakum, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett, and J. Chen, "$BiVO_4/CeO_2$ Nanocomposites with High Visible-Light-Induced Photocatalytic Activity", ACS Appl. Mater. Interfaces, 4, 3718 (2012). https://doi.org/10.1021/am300812n
  27. M. C. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, "Efficient Photocatalytic Degradation of Phenol over $Co_3O_4/BiVO_4$ Composite under Visible Light Irradiation", J. Phys. Chem. B, 110, 20211 (2006). https://doi.org/10.1021/jp063441z
  28. L. Z. Li and B. Yan, "$BiVO_4/Bi_2O_3$ Submicrometer Sphere Composite: Microstructure and Photocatalytic Activity under Visible-Light Irradiation", J. Alloys Compd., 476, 624 (2009). https://doi.org/10.1016/j.jallcom.2008.09.083
  29. D. K. Lee, I. S. Cho, S. Lee, S. T. Bae, J. H. Noh, D. W. Kim, and K. S. Hong, "Effects of Carbon Content on the Photocatalytic Activity of C/$BiVO_4$ Composites under Visible Light Irradiation", Mater. Chem. Phys., 119, 106 (2010). https://doi.org/10.1016/j.matchemphys.2009.08.028
  30. X. Men, H. Chen, K. Chang, X. Fang, C. Wu, W. Qin, and S. Yin, "Three-Dimensional Free-Standing ZnO/Graphene Composite Foam for Photocurrent Generation and Photocatalytic Activity", Appl. Catal. B: Environ., 187, 367 (2016). https://doi.org/10.1016/j.apcatb.2016.01.052
  31. N. Zhang, Y. Zhang, X. Pan, M. Q. Yang, and Y. J. Xu, "Constructing Ternary CdS-Graphene-$TiO_2$ Hybrids on the Flatland of Graphene Oxide with Enhanced Visible-Light Photoactivity for Selective Transformation", J. Phys. Chem. C, 116, 180233 (2012).
  32. S. Pan and X. Liu, "ZnS-Graphene Nanocomposite: Synthesis, Characterization and Optical Properties", J. Sol. Sta. Chem., 191, 51 (2012). https://doi.org/10.1016/j.jssc.2012.02.048
  33. Y. L. Min, K. Zhang, Y. C. Chen, and Y. G. Zhang, "Enhanced Photocatalytic Performance of $Bi_2WO_6$ by Graphene Supporter as Charge Transfer Channel", Separ. Purif. Technol., 86, 98 (2012). https://doi.org/10.1016/j.seppur.2011.10.025
  34. T. Xu, L. Zhang, H. Cheng, and Y. Zhu, "Significantly Enhanced Photocatalytic Performance of ZnO via Graphene Hybridization and the Mechanism Study", Appl. Catal. B: Environ., 101, 382 (2011). https://doi.org/10.1016/j.apcatb.2010.10.007
  35. S. Y. Yin, X. J. Men, H. Sun, P. She, W. Zhang, C. F. Wu, W. P. Qin, and X. D. Chen, "Enhanced Photocurrent Generation of Bio-Inspired Graphene/ZnO Composite Films", J. Mater. Chem. A, 3, 12016 (2015). https://doi.org/10.1039/C5TA02297E
  36. M. Sangareswari and M. M. Sundaram, "A Comparative Study on Photocatalytic Efficiency of $TiO_2$ and $BiVO_4$ Nanomaterial for Degradation of Methylene Blue Dye under Sunlight Irradiation", J. Avd. Chem. Sci., 1, 75 (2015).
  37. S. Sarkar and K. K. Chattopadhyay, "Visible Light Photocatalysis and Electron Emission from Porous Hollow Spherical $BiVO_4$ Nanostructures Synthesized by a Novel Route", Physica. E, 58, 52 (2014). https://doi.org/10.1016/j.physe.2013.11.014
  38. S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff, "Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes", J. Phys. Chem. C, 114, 8814 (2010). https://doi.org/10.1021/jp101125j
  39. J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, and X. Chen, "$CuFe_2O_4$ Magnetic Nanoparticles: A Simple and Efficient Catalyst for the Reduction of Nitrophenol", Chem. Eng. J., 221, 16 (2013). https://doi.org/10.1016/j.cej.2013.02.009
  40. H. Liu, T. Lv, C. Zhu, X. Su, and Z. Zhu, "Efficient Synthesis of $MoS_2$ Nanoparticles Modified $TiO_2$ Nanobelts with Enhanced Visible-Light-Driven Photocatalytic Activity", J. Mol. Catal. A: Chem., 396, 136 (2015). https://doi.org/10.1016/j.molcata.2014.10.002
  41. Y. Geng, P. Zhang, N. Li, and Z. Sun, "Synthesis of Co Doped $BiVO_4$ with Enhanced Visible-Light Photocatalytic Activities", J. Alloys Compd., 651, 744 (2015). https://doi.org/10.1016/j.jallcom.2015.08.123
  42. K. Dai, G. Dawson, S. Yang, Z. Chen, and L. Lu, "Large Scale Preparing Carbon Nanotube/Zinc Oxide Hybrid and its Application for Highly Reusable Photocatalyst", Chem. Eng. J., 191, 571 (2012). https://doi.org/10.1016/j.cej.2012.03.008