DOI QR코드

DOI QR Code

Role of Fermentation in Improving Nutritional Quality of Soybean Meal - A Review

  • Mukherjee, Runni (Department of Food Technology and Biochemical Engineering, Jadavpur University) ;
  • Chakraborty, Runu (Department of Food Technology and Biochemical Engineering, Jadavpur University) ;
  • Dutta, Abhishek (Faculteit Industriele Ingenieurswetenschappen, KU Leuven, Campus Groep T Leuven)
  • Received : 2015.07.27
  • Accepted : 2015.12.01
  • Published : 2016.11.01

Abstract

Soybean meal (SBM), a commonly used protein source for animal feed, contains anti-nutritional factors such as trypsin inhibitor, phytate, oligosaccharides among others, which limit its utilization. Microbial fermentation using bacteria or fungi has the capability to improve nutritional value of SBM by altering the native composition. Both submerged and solid state fermentation processes can be used for this purpose. Bacterial and fungal fermentations result in degradation of various anti-nutritional factors, an increase in amount of small-sized peptides and improved content of both essential and non-essential amino acids. However, the resulting fermented products vary in levels of nutritional components as the two species used for fermentation differ in their metabolic activities. Compared to SBM, feeding non-ruminants with fermented SBM has several beneficial effects including increased average daily gain, improved growth performance, better protein digestibility, decreased immunological reactivity and undesirable morphological changes like absence of granulated pinocytotic vacuoles.

Keywords

Amino Acids;Anti-nutritional Factors;Soybean Meal;Fermentation;Non-ruminants

References

  1. Adams, N. R. 1995. Detection of the effects of phytoestrogens on sheep and cattle. J. Anim. Sci. 73:1509-1515. https://doi.org/10.2527/1995.7351509x
  2. Amadou, I., A. Tidjani, M. B. K. Foh, M. T. Kamara, and G. W. Le. 2010a. Influence of Lactobacillus plantarum Lp6 fermentation on the functional properties of soybean protein meal. Emir. J. Food Agric. 22:456-465. https://doi.org/10.9755/ejfa.v22i6.4663
  3. Amadou, I., M. T. Kamara, A. Tidjani, M. B. K. Foh, and G. W. Le. 2010b. Physicochemical and nutritional analysis of fermented soybean protein meal by Lactobacillus plantarum Lp6. World J. Dairy Food Sci. 5:114-118.
  4. Amadou, I., G. W. Le, Y. H. Shi, and S. Jin. 2011. Reducing, radical scavenging, and chelation properties of fermented soy protein meal hydrolysate by Lactobacillus plantarum Lp6. Int. J. Food Prop. 14:654-665. https://doi.org/10.1080/10942910903312502
  5. Chah, C. C., C. W. Carlson, G. Semeniuk, I. S. Palmer, and C. W. Hesseltine. 1975. Growth promoting effects of fermented soyabeans for broilers. Poult. Sci. 54:600-609. https://doi.org/10.3382/ps.0540600
  6. Cervantes-Pahm, S. K. and H. H. Stein. 2010. Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J. Anim. Sci. 88:2674-2683. https://doi.org/10.2527/jas.2009-2677
  7. Dunsford, B. R., D. A. Knabe, and W. E. Hacnsly. 1989. Effect of dietary soybean meal on the microscopic anatomy of the small intestine in the early-weaned pig. J. Anim. Sci. 67:1855-1864. https://doi.org/10.2527/jas1989.6771855x
  8. Egounlety, M. and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and ground bean (Macrotyloma geocarpa Harms). J. Food Eng. 56:249-254. https://doi.org/10.1016/S0260-8774(02)00262-5
  9. Feng, J., X. Liu, Z. R. Xu, Y. Y. Liu, and Y. P. Lu. 2007a. Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim. Feed Sci. Technol. 134:235-242. https://doi.org/10.1016/j.anifeedsci.2006.08.018
  10. Feng, J., X. Liu, Z. R. Xu, Y. P. Lu, and Y. Y. Liu. 2007b. The effect of Aspergillus oryzae fermented soybean meal on growth performance, digestibility of dietary components and activities of intestinal enzymes in weaned piglets. Anim. Feed Sci. Technol. 134:295-303. https://doi.org/10.1016/j.anifeedsci.2006.10.004
  11. Frias, J., Y. S. Song, C. Martinez-Villaluenga, E. G. De Mejia, and C. Vidal-Valverde. 2008. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 56:99-105. https://doi.org/10.1021/jf072177j
  12. Han, B. Z., F. M. Rombouts, and M. J. R. Nout. 2001. A Chinese fermented soybean food. Int. J. Food Microbiol. 65:1-10. https://doi.org/10.1016/S0168-1605(00)00523-7
  13. Hirabayashi, M., T. Matsui, H. Yano, and T. Nakajima. 1998. Fermentation of soybean meal with Aspergillus usamii reduces phosphorus excretion in chicks. Poult. Sci. 77:552-556. https://doi.org/10.1093/ps/77.4.552
  14. Hong, K. J., C. H. Lee, and S. W. Kim. 2004. Aspergillus oryzae 3.042GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 7:430-434. https://doi.org/10.1089/jmf.2004.7.430
  15. Hotz, C. and R. S. Gibson. 2007. Traditional food-processing and preparation practices to enhancing the bioavailability of micronutrients in plant-based diets. J. Nutr. 137:1097-1100. https://doi.org/10.1093/jn/137.4.1097
  16. Ilyas, A., M. Hirabayashi, T. Matsui, H. Yano, F. Yano, T. Kikushima, M. Takebe, and K. Hayakawa. 1995. A note on the removal of phytate in soybean meal using Aspergillus usami. Asian Australas. J. Anim. Sci. 8:135-138. https://doi.org/10.5713/ajas.1995.135
  17. Jones, C. K., J. M. DeRouchey, J. L. Nelssen, M. D. Tokach, S. S. Dritz, and R. D. Goodband. 2010. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance. J. Anim. Sci. 88:1725-1732. https://doi.org/10.2527/jas.2009-2110
  18. Kader, M. A., S. Koshio, M. Ishikawa, S. Yokoyama, M. Bulbul, B. T. Nguyen, J. Gao, and A. Laining. 2012. Can fermented soybean meal and squid by-product blend be used as fishmeal replacements for Japanese flounder (Paralichthys olivaceus)? Aquac. Res. 43:1427-1438. https://doi.org/10.1111/j.1365-2109.2011.02945.x
  19. Kishida, T., H. Ataki, M. Takebe, and K. Ebihara. 2000. Soybean meal fermented by Aspergillus awamori increases the cytochrome p-450 content of the liver microsomes of mice. J. Agric. Food Chem. 48:1367-1372. https://doi.org/10.1021/jf9905830
  20. Kwon, I. H., M. H. Kim, C. H. Yun, J. Y. Go, C. H. Lee, H. J. Lee, W. Phipek, and J. K. Ha. 2011. Effects of fermented soybean meal on immune response of weaned calves with experimentally induced lipopolysaccharide challenge. Asian Australas. J. Anim. Sci. 24:957-964. https://doi.org/10.5713/ajas.2011.10419
  21. Lena, D. G., E. Patroni, and G. B. Quaglia. 1997. Improving the nutritional value of wheat bran by a white rot fungus. Int. J. Food Sci. Technol. 32:513-519. https://doi.org/10.1111/j.1365-2621.1997.tb02125.x
  22. Li, D. F., J. L. Nelssen, P. G. Reddy, F. Blecha, J. D. Hancock, G. Allee, R. D. Goodband, and R. D. Klemm. 1990. Transient hypersensitivity to soybean meal in the early-weaned pig. J. Anim. Sci. 68:1790-1799. https://doi.org/10.2527/1990.6861790x
  23. Liener, I. E. 1994. Implications of antinutritional components in soybean foods. Crit. Rev. Food Sci. Nutr. 34:31-67. https://doi.org/10.1080/10408399409527649
  24. Liu, X., J. Feng, Z. Xu, Y. Lu, and Y. Liu. 2007. The effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets. Turk. J. Vet. Anim. Sci. 31:341-345.
  25. Mathivanan, R., P. Selvaraj, and K. Nanjappan. 2006. Feeding of fermented soybean meal on broiler performance. Int. J. Poult. Sci. 5:868-872. https://doi.org/10.3923/ijps.2006.868.872
  26. Moktan, B., J. Saha, and P. K. Sarkar. 2008. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Res. Int. 41:586-593. https://doi.org/10.1016/j.foodres.2008.04.003
  27. Mukherjee, R., A. Dutta, and R. Chakraborty. 2015. Fermented soy products gaining popularity in poultry diets. All About Feed. 23:22-23.
  28. Pinto, G. A. S., S. G. F. Leite, S. C. Terzi, and C. Couri. 2001. Selection of tannase-producing Aspergillus niger strains. Braz. J. Microbiol. 32:24-26. https://doi.org/10.1590/S1517-83822001000100006
  29. Qin, G., E. R. ter Elst, M. W. Bosch, and A. F. B. van der Poel. 1996. Thermal processing of whole soya beans: Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets. Anim. Feed Sci. Technol. 57:313-324. https://doi.org/10.1016/0377-8401(95)00863-2
  30. Rigo, E., J. L. Ninow, M. Di Luccio, J. V. Oliveira, A. E. Polloni, D. Remonatto, F. Arbter, R. Vardanega, D. de Oliveira, and H. Treichel. 2010. Lipase production by solid fermentation of soybean meal with different supplements. LWT-Food Sci. Technol. 43:1132-1137. https://doi.org/10.1016/j.lwt.2010.03.002
  31. Ross, P. R., S. Morgan, and C. Hill. 2002. Preservation and fermentation: past, present and future. Int. J. Food Microbiol. 79:3-16. https://doi.org/10.1016/S0168-1605(02)00174-5
  32. Singh, K., C. J. Linden, E. J. Johnson, and P. R. Tengerdy. 1990. Bioconversion of wheat straw to animal feed by solid substrate fermentation or ensiling. Indian J. Microbiol. 30:201-208.
  33. Song, Y. S., J. Frias, C. Martinez-Villaluenga, C. Vidal-Valdeverde, and E. G. de Mejia. 2008. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chem. 108:571-581. https://doi.org/10.1016/j.foodchem.2007.11.013
  34. Song, Y. S., V. G. Perez, J. E. Pettigrew, C. Martinez-Villaluenga, and E. G. de Mejia. 2010. Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma. Anim. Feed Sci. Technol. 159:41-49. https://doi.org/10.1016/j.anifeedsci.2010.04.011
  35. Teng, D., M. Gao, Y. Yang, B. Liu, Z. Tian, and J. Wang. 2012. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatal. Agric. Biotechnol. 1:32-38.
  36. Yamamoto, T., Y. Iwashita, H. Matsunari, T. Sugita, H. Furuita, A. Akimoto,K. Okamatsu, and N. Suzuki. 2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of Rainbow trout Oncorhynchus mykiss. Aquaculture 309:173-180. https://doi.org/10.1016/j.aquaculture.2010.09.021
  37. Yang, Y. X., Y. G. Kim, J. D. Lohakare, J. H. Yun, J. K. Lee, M. S. Kwon, J. K. Park, J. Y. Choi, and B. J. Chae. 2007. Comparative efficacy of different soy protein sources on growth performance, nutrient digestibility, and intestinal morphology in weaned pigs. Asian Australas. J. Anim. Sci. 20:775-783. https://doi.org/10.5713/ajas.2007.775
  38. Yuan, Y. C., Y. C. Lin, H. J. Yang, Y. Gong, S. Y. Gong, and D. H. Yu. 2013. Evaluation of fermented soybean meal in the practical diets for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquac. Nutr. 19:74-83. https://doi.org/10.1111/j.1365-2095.2012.00939.x
  39. Zamora, R. G. and T. L. Veum. 1979. Whole soybeans fermented with Aspergillus oryzae and Rhizopus oligosporus for growing pigs. J. Anim. Sci. 48:63-68. https://doi.org/10.2527/jas1979.48163x

Cited by

  1. 日粮中新鲜发酵豆粕对保育猪生长性能、氨气和颗粒物排放以及氮排泄的影响 vol.18, pp.12, 2017, https://doi.org/10.1631/jzus.B1700180
  2. 葡萄糖和赤霉酸对芥蓝芽菜中芥子油苷含量及其抗氧化能力的影响 vol.18, pp.12, 2017, https://doi.org/10.1631/jzus.B1700308
  3. 灵芝菌生物转化大豆异黄酮及其产物对结直肠癌细胞HTL-9 的体外凋亡诱导研究 vol.18, pp.12, 2017, https://doi.org/10.1631/jzus.B1700189
  4. Isolation of bacteria from fermented food and grass carp intestine and their efficiencies in improving nutrient value of soybean meal in solid state fermentation vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0245-1
  5. Microbiota in fermented feed and swine gut vol.102, pp.7, 2018, https://doi.org/10.1007/s00253-018-8829-4
  6. Effective reduction of antinutritional factors in soybean meal by acetic acid-catalyzed processing pp.01458892, 2018, https://doi.org/10.1111/jfpp.13775
  7. pp.08938849, 2018, https://doi.org/10.1111/jwas.12547
  8. Production of a water-soluble protein powder from anchovy and soybean meal by endogenous enzymatic hydrolysis and solid-state fermentation vol.43, pp.1, 2018, https://doi.org/10.1111/jfpp.13854
  9. Bioconversion of Agro-Industrial Waste to Value-Added Product Lycopene by Photosynthetic Bacterium Rhodopseudomonas faecalis and Its Carotenoid Composition pp.1877-265X, 2019, https://doi.org/10.1007/s12649-018-00571-z
  10. Impact of Feeding Fermented Wet Feed on Broiler Breeder Production Performance and Some Hatchability Traits vol.18, pp.3, 2019, https://doi.org/10.3923/ijps.2019.116.121