Validation of Single Nucleotide Polymorphisms Associated with Carcass Traits in a Commercial Hanwoo Population

  • Sudrajad, Pita (Division of Animal and Dairy Science, Chungnam National University) ;
  • Sharma, Aditi (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Dang, Chang Gwon (Hanwoo Research Institute, National Institute of Animal Science, RDA) ;
  • Kim, Jong Joo (School of Biotechnology, Yeungnam University) ;
  • Kim, Kwan Suk (Department of Animal Science, Chungbuk National University) ;
  • Lee, Jun Heon (Division of Animal and Dairy Science, Chungnam National University) ;
  • Kim, Sidong (Hanwoo Research Institute, National Institute of Animal Science, RDA) ;
  • Lee, Seung Hwan (Division of Animal and Dairy Science, Chungnam National University)
  • Received : 2015.10.12
  • Accepted : 2016.02.23
  • Published : 2016.11.01


Four carcass traits, namely carcass weight (CW), eye muscle area (EMA), back fat thickness (BF), and marbling score (MS), are the main price decision parameters used for purchasing Hanwoo beef. The development of DNA markers for these carcass traits for use in a beef management system could result in substantial profit for beef producers in Korea. The objective of this study was to validate the association of highly significant single nucleotide polymorphisms (SNPs) identified in a previous genome-wide association study (GWAS) with the four carcass traits in a commercial Hanwoo population. We genotyped 83 SNPs distributed across all 29 autosomes in 867 steers from a Korean Hanwoo feedlot. Six SNPs, namely ARS-BFGL-NGS-22774 (Chr4, Pos:4889229), ARS-BFGL-NGS-100046 (Chr6, Pos:61917424), ARS-BFGL-NGS-39006 (Chr27, Pos:38059196), ARS-BFGL-NGS-18790 (Chr10, Pos:26489109), ARS-BFGL-NGS-43879 (Chr9, Pos:39964297), and BTB-00775794 (Chr20, Pos:20476265), were found to be associated with CW, EMA, BF, and MS. The ARS-BFGL-NGS-22774, BTB-00775794, and ARS-BFGL-NGS-39006 markers accounted for 1.80%, 1.72%, and 1.35% (p<0.01), respectively, of the phenotypic variance in the commercial Hanwoo population. Many genes located in close proximity to the significant SNPs identified in this study were previously reported to have roles in carcass traits. The results of this study could be useful for marker-assisted selection programs.


Validation;Single Nucleotide Polymorphism;Carcass Traits;Hanwoo


Supported by : National Institute of Animal Science


  1. Barendse, W., A. Reverter, R. J. Bunch, B. E. Harrison, W. Barris, and M. B. Thomas. 2007. A validated whole-genome association study of efficient food conversion in cattle. Genetics 176:1893-1905.
  2. Campellone, K. G. and M. D. Welch. 2010. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11:237-251.
  3. Carbon, S., A. Ireland, C. J. Mungall, S. Q. Shu, B. Marshall, S. Lewis, the AmiGO Hub, and the Web Presence Working Group. 2009. AmiGO: online access to ontology and annotation data. Bioinformatics 25:288-289.
  4. Du, M., J. Yin, and K. J. Zhu. 2010. Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Sci. 86:103-109.
  5. Fleming-Waddell, J. N., G. R. Olbricht, T. M. Taxis, J. D. White, T. Vuocolo, B. A. Craig, R. L. Tellam, M. K. Neary, N. E. Cockett, and C. A. Bidwell. 2009. Effect of DLK1 and RTL1 but not MEG3 or MEG8 on muscle gene expression in callipyge lambs. PLoS ONE 4:e7399.
  6. Garcia, M. D., L. Matukumalli, T. L. Wheeler, S. D. Shackelford, T. P. L. Smith, and E. Casas. 2010. Markers on bovine chromosome 20 associated with carcass quality and composition traits and incidence of contracting infectious bovine keratoconjunctivitis. Anim. Biotechnol. 21:188-202.
  7. Guan, R., S. El-Rass, D. Spillane, S. Lam, Y. Wang, J. Wu, Z. Chen, A. Wang, Z. Jia, A. Keating, J. Hu, and X.-Y. Wen. 2013. Rbm47, a novel RNA binding protein, regulates zebrafish head development. Dev. Dyn. 242:1395-1404.
  8. Han, S. H., I. C. Cho, J. H. Kim, M. S. Ko, H. Y. Jeong, H. S. Oh, and S. S. Lee. 2009. AGHR polymorphism and its associations with carcass traits in Hanwoo cattle. Genes Genomics 31:35-41.
  9. Hu, F., J. F. Liu, Z. B. Zeng, X. D. Ding, C. C. Yin, Y. Z. Gong, and Q. Zhang. 2010. QTL identification using combined linkage and linkage disequilibrium mapping for milk production traits on BTA6 in Chinese Holstein population. Asian Australas. J. Anim. Sci. 23:1261-1267.
  10. Jeong, J. Y., J. S. Kim, T. H. Nguyen, H. -J. Lee, and M. Baik. 2013. Wnt/${\beta}$-catenin signaling and adipogenic genes are associated with intramuscular fat content in the longissimus dorsi muscle of Korean cattle. Anim. Genet. 44:627-635.
  11. Jost, P., M. Fasshauer, C. R. Kahn, M. Benito, M. Meyer, V. Ott, B. B. Lowell, H. H. Klein, and J. Klein. 2002. Atypical ${\beta}$-adrenergic effects on insulin signaling and action in ${\beta}3$-adrenoceptor-deficient brown adipocytes. Am. J. Physiol. Endocrinol. Metab. 283:E146-E153.
  12. Koohmaraie, M., M. P. Kent, S. D. Shackelford, E. Veiseth, and T. L. Wheeler. 2002. Meat tenderness and muscle growth: Is there any relationship? Meat Sci. 62:345-352.
  13. Lee, H. J., H. S. Park, W. Kim, D. Yoon, and S. Seo. 2014. Comparison of metabolic network between muscle and intramuscular adipose tissues in Hanwoo beef cattle using a systems biology approach. Int. J. Genomics 2014:679437.
  14. Lee, K., D. T. Nguyen, M. Choi, S. Y. Cha, J. H. Kim, H. Dadi, H. G. Seo, K. Seo, T. Chun, and C. Park. 2013a. Analysis of cattle olfactory subgenome: The first detail study on the characteristics of the complete olfactory receptor repertoire of a ruminant. BMC Genomics 14:596.
  15. Lee, S. H., B. H. Choi, D. Lim, C. Gondro, Y. M. Cho, C. G. Dang, A. Sharma, G. W. Jang, K. T. Lee, D. Yoon, H. K. Lee, S. H. Yeon, B. S. Yang, H. S. Kang, and S. K. Hong. 2013b. Genomewide association study identifies major loci for carcass weight on BTA14 in Hanwoo (Korean cattle). PLoS ONE 8:e74677.
  16. Li, Y. and J. J. Kim. 2015. Multiple linkage disequilibrium mapping methods to validate additive quantitative trait loci in Korean native cattle (Hanwoo). Asian Australas. J. Anim. Sci. 28:926-935.
  17. Lu, D., M. Sargolzaei, M. Kelly, G. Vander Voort, Z. Wang, I. Mandell, S. Moore, G. Plastow, and S. P. Miller. 2013. Genomewide association analyses for carcass quality in crossbred beef cattle. BMC Genetics 14:80.
  18. McGilchrist, P., C. L. Alston, G. E. Gardner, K. L. Thomson, and D. W. Pethick. 2012. Beef carcasses with larger eye muscle areas, lower ossification scores and improved nutrition have a lower incidence of dark cutting. Meat Sci. 92:474-480.
  19. Miner, J. H. and P. D. Yurchenco. 2004. Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 20:255-284.
  20. Murray, A. C. 1995. The evaluation of muscle quality. In: Quality and Grading of Carcasses of Meat Animals (Ed. S. D. M. Jones). CRC Press, Inc., USA. pp. 84-103.
  21. Nalaila, S. M., P. Stothard, S. S. Moore, Z. Wang, and C. Li. 2011. Whole genome fine mapping of quantitative trait loci for ultrasound and carcass merit traits in beef cattle. Can. J. Anim. Sci. 91:61-73.
  22. Nishimura, S., T. Watanabe, K. Mizoshita, K. Tatsuda, T. Fujita, N. Watanabe, Y. Sugimoto, and A. Takasuga. 2012. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genetics 13:40.
  23. Okazaki, I., N. Suzuki, N. Nishi, A. Utani, H. Matsuura, H. Shinkai, H. Yamashita, Y. Kitagawa, and M. Nomizu. 2002. Identification of biologically active sequences in the Laminin ${\alpha}4$ chain G domain. J. Biol. Chem. 277: 37070-37078.
  24. Owens, F. N., P. Dubeski, and C. F. Hanson. 1993. Factors that alter the growth and development of ruminants. J. Anim. Sci. 71:3138-3150.
  25. Qanbari, S. and H. Simianer. 2014. Mapping signatures of positive selection in the genome of livestock. Livest. Sci. 166:133-143.
  26. R Core Team. 2015. R: A Language and Environment for Statistical Computing. (ver.3.03.) R Foundation for Statistical Computing, Vienna, Austria.
  27. Rebhan, M., V. Chalifa-Caspi, J. Prilusky, and D. Lancet. 1998. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics 14:656-664.
  28. Renault, L., B. Bugyi, and M.-F. Carlier. 2008. Spire and Cordonbleu: multifunctional regulators of actin dynamics. Trends Cell Biol. 18:494-504.
  29. Sharma, A., C. G. Dang, K. S. Kim, J. J. Kim, H. K. Lee, H. C. Kim, S. H. Yeon, H. S. Kang, and S. H. Lee. 2014. Validation of genetic polymorphisms on BTA14 associated with carcass trait in a commercial Hanwoo population. Anim. Genet. 45:863-867.
  30. Talton, C. S. 2006. Effects of Optaflexx Feeding on Animal Performance, Carcass Traits, Yields of Carcass Primals and Value Cuts, and Meat Tenderness in Ovariectomized Heifers. Master Thesis. The University of Georgia, Athens, Georgia.
  31. Korea Institute for Animal Products Quality Evaluation. 2015. The beef carcass grading. Accessed June 25, 2015.
  32. Van Eenennaam, A. L., J. Li, R. M. Thallman, R. L. Quaas, M. E. Dikeman, C. A. Gill, D. E. Franke, and M. G. Thomas. 2007. Validation of commercial DNA tests for quantitative beef quality traits. J. Anim. Sci. 85:891-900.
  33. Vanharanta, S., C. B. Marney, W. Shu, M. Valiente, Y. Zou, A. Mele, R. B. Darnell, and J. Massague. 2014. Loss of the multifunctional RNA-binding protein RBM47 as a source of selectable metastatic traits in breast cancer. eLife. 3:e02734.
  34. Wayt, J. and A. Bretscher. 2014. Cordon bleu serves as a platform at the basal region of microvilli, where it regulates microvillar length through its WH2 domains. Mol. Biol. Cell 25:2817-2827.
  35. Yu, H. 2013. Genes with Physiological Roles in Callipyge Muscle Hypertrophy. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA.

Cited by

  1. Genome sequencing and protein domain annotations of Korean Hanwoo cattle identify Hanwoo-specific immunity-related and other novel genes vol.19, pp.1, 2018,