A Major Locus for Quantitatively Measured Shank Skin Color Traits in Korean Native Chicken

  • Jin, S. (Division of Animal and Dairy Science, Chungnam National University) ;
  • Lee, J.H. (Division of Animal and Dairy Science, Chungnam National University) ;
  • Seo, D.W. (Division of Animal and Dairy Science, Chungnam National University) ;
  • Cahyadi, M. (Division of Animal and Dairy Science, Chungnam National University) ;
  • Choi, N.R. (Division of Animal and Dairy Science, Chungnam National University) ;
  • Heo, K.N. (Poultry Research Institute, National Institute of Animal Science, Rural Development Administration) ;
  • Jo, C. (Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Park, H.B. (Division of Animal and Dairy Science, Chungnam National University)
  • 투고 : 2016.03.03
  • 심사 : 2016.06.18
  • 발행 : 2016.11.01


Shank skin color of Korean native chicken (KNC) shows large color variations. It varies from white, yellow, green, bluish or grey to black, whilst in the majority of European breeds the shanks are typically yellow-colored. Three shank skin color-related traits (i.e., lightness [$L^*$], redness [$a^*$], and yellowness [$b^*$]) were measured by a spectrophotometer in 585 progeny from 68 nuclear families in the KNC resource population. We performed genome scan linkage analysis to identify loci that affect quantitatively measured shank skin color traits in KNC. All these birds were genotyped with 167 DNA markers located throughout the 26 autosomes. The SOLAR program was used to conduct multipoint variance-component quantitative trait locus (QTL) analyses. We detected a major QTL that affects $b^*$ value (logarithm of odds [LOD] = 47.5, $p=1.60{\times}10^{-49}$) on GGA24 (GGA for Gallus gallus). At the same location, we also detected a QTL that influences $a^*$ value (LOD = 14.2, $p=6.14{\times}10^{-16}$). Additionally, beta-carotene dioxygenase 2 (BCDO2), the obvious positional candidate gene under the linkage peaks on GGA24, was investigated by the two association tests: i.e., measured genotype association (MGA) and quantitative transmission disequilibrium test (QTDT). Significant associations were detected between BCDO2 g.9367 A>C and $a^*$ ($P_{MGA}=1.69{\times}10^{-28}$; $P_{QTDT}=2.40{\times}10^{-25}$). The strongest associations were between BCDO2 g.9367 A>C and $b^*$ ($P_{MGA}=3.56{\times}10^{-66}$; $P_{QTDT}=1.68{\times}10^{-65}$). However, linkage analyses conditional on the single nucleotide polymorphism indicated that other functional variants should exist. Taken together, we demonstrate for the first time the linkage and association between the BCDO2 locus on GGA24 and quantitatively measured shank skin color traits in KNC.


연구 과제 주관 기관 : Rural Development Administration, Korea Institute of Planning & Evaluation for Technology in Food, Agriculture Forestry & Fisheries (IPET)


  1. Abecasis, G. R., L. R. Cardon, and W. O. Cookson. 2000. A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66:279-292.
  2. Almasy, L. and J. Blangero. 2004. Exploring positional candidate genes: linkage conditional on measured genotype. Behav. Genet. 34:173-177.
  3. Almasy, L. and J. Blangero. 2010. Variance component methods for analysis of complex phenotypes. Cold Spring Harb. Protoc. 2010:pdb.top77.
  4. Andersson, L. 2003. Melanocortin receptor variants with phenotypic effects in horse, pig, and chicken. Ann. NY Acad. Sci. 994:313-318.
  5. Barsh, G. S. 2003. What controls variation in human skin color? PLoS Biol. 1:e27.
  6. Choe, J. H., K. Nam, S. Jung, B. Kim, H. Yun, and C. Jo. 2010. Differences in the quality characteristics between commercial Korean native chickens and broilers. Korean J. Food Sci. Anim. Resour. 30:13-19.
  7. Choi, N. R., D. W. Seo, S. B. Jemaa, H. Sultana, K. N .Heo, C. Jo, and J. H. Lee. 2015. Discrimination of the commercial Korean native chicken population using microsatellite markers. J. Anim. Sci. Technol. 57:5.
  8. Chung, R. H., E. R. Hauser, and E. R. Martin. 2007. Interpretation of simultaneous linkage and family-based association tests in genome screens. Genet. Epidemiol. 31:134-142.
  9. Dorshorst, B., A. M. Molin, C. J. Rubin, A. M. Johansson, L. Stromstedt, M. H. Pham, C. F. Chen, F. Hallbook, C. Ashwell, and L. Andersson. 2011. A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genet. 7:e1002412.
  10. Dorshorst, B., R. Okimoto, and C. Ashwell. 2010. Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken. J. Hered. 101:339-350.
  11. Eriksson, J., G. Larson, U. Gunnarsson, B. Bed'hom, M. Tixier-Boichard, L. Stromstedt, D. Wright, A. Jungerius, A. Vereijken, and E. Randi et al. 2008. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet. 4:e1000010.
  12. Green, P., K. Falls, and S. Crooks. 1990. Documentation for CRIMAP, version 2.4. Washington University School of Medicine, St.Louis, MO, USA.
  13. Gilmour, A. R., R. Thompson, and B. R. Cullis. 1995. Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440-1450.
  14. Groenen, M. A. M., H. H. Cheng, N. Bumstead, B. F. Benkel, W. E. Briles, T. Burke, D. W. Burt, L. B. Crittenden, J. Dodgson, and J. Hillel et al. 2000. A consensus linkage map of the chicken genome. Genome Res. 10:137-147.
  15. Havill, L. M., T. D. Dyer, D. K. Richardson, M. C. Mahaney, and J. Blangero. 2005. The quantitative trait linkage disequilibrium test: a more powerful alternative to the quantitative transmission disequilibrium test for use in the absence of population stratification. BMC Genet. 6:S91.
  16. Hennessy A., C. Oh, B. Diffey, K. Wakamatsu, S. Ito, and J. Rees. 2005. Eumelanin and pheomelanin concentrations in human epidermis before and after UVB irradiation. Pigment Cell Res. 18:220-223.
  17. Jeon, H. J., J. H. Choe, Y. K. Jung, Z. A. Kruk, D. G. Lim, and C. Jo. 2010. Comparison of the chemical composition, textural characteristics, and sensory properties of North and South Korean native chickens and commercial broilers. Korean J. Food Sci. Anim. Resour. 30:171-178.
  18. Jin, S., H. B. Park, D. W. Seo, M. Cahyadi, N. R. Choi, K. N. Heo, C. Jo, and J. H. Lee. 2014. Association of MC1R genotypes with shank color traits in Korean native chicken. Livest. Sci. 170:1-7.
  19. Jung, Y., H. J. Jeon, S. Jung, J. H. Choe, J. H. Lee, K. N. Heo, B. S Kang, and C. Jo. 2011. Comparison of quality traits of thigh meat from Korean native chickens and broilers. Korean J. Food Sci. Anim. Resour. 31:684-692.
  20. Kerje, S., J. Lind, K. Schutz, P. Jensen, and L. Andersson. 2003. Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Anim. Genet. 34:241-248.
  21. Kiefer, C., S. Hessel, J. M. Lampert, K. Vogt, M. O. Lederer, D. E. Breithaupt, and von J. Lintig. 2001. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. J. Biol. Chem. 276:14110-14116.
  22. Klungland, H. and D. I. Vage. 2003. Pigmentary switches in domestic animal species. Ann. NY Acad. Sci. 994:331-338.
  23. Knox, C. W. 1935. The inheritance of shank color in chickens. Genetics 20:529-544.
  24. Ling, M. K., M. C. Lagerstrom, R. Fredriksson, R. Okimoto, N. I. Mundy, S. Takeuchi, and H. B. Schioth . 2003. Association of feather colour with constitutively active melanocortin 1 receptors in chicken. Eur. J. Biochem. 270:1441-1449.
  25. McGowan, K. A., J. Z. Li, C. Y. Park, V. Beaudry, H. K. Tabor, A. J. Sabnis, W. Zhang, H. Fuchs, M. H. de Angelis, R. M. Myers, L. D. Attardi, and G. S. Barsh. 2008. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet. 40:963-970.
  26. Miller, S. A., D. D. Dykes, and H. F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic. Acids Res. 16:1215.
  27. Piepho, H. P. 2001. A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157:425-432.
  28. Rees, J. L. 2003. Genetics of hair and skin color. Annu. Rev. Genet. 37:67-90.
  29. Seo, D. W., J. D. Oh, S. Jin, K. D. Song, H. B. Park, K. N. Heo, Y. Shin, M. Jung, J. Park, C. Jo, H. K. Lee, and J. H. Lee. 2015. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data. Mol. Biol. Rep. 42:471-477.
  30. Sirri, F., M. Petracci, M. Bianchi, and A. Meluzzi. 2010. Survey of skin pigmentation of yellow-skinned broiler chickens. Poult. Sci. 89:1556-1561.
  31. Siwek, M., D. Wragg, A. Slawinska, M. Malek, O. Hanotte, and J. Mwacharo. 2013. Insights into the genetic history of Greenlegged Partridgelike fowl: mtDNA and genome-wide SNP analysis. Anim. Genet. 44:522-532.
  32. Smyth, Jr. J. R. 1990. Genetics of plumage, skin and eye pigmentation in chicken. In: Poultry Breeding and Genetics (Ed. R. D. Crawford) Elsevier, Amsterdam, The Netherlands.
  33. Tian, X., J. Jiang, R. Fan, H. Wang, X. Meng, X. He, J. He, H. Li, J. Geng, X. Yu, Y. Song, D. Zhang, J. Yao, G. W. Smith, and C. Dong. 2012. Identification and characterization of microRNAs in white and brown alpaca skin. BMC Genomics 13:555.

피인용 문헌

  1. Mapping of Id locus for dermal shank melanin in a Chinese indigenous chicken breed vol.96, pp.6, 2017,