Bioanalytical method validation for determination of arsenic speciation in dog plasma using HPLC-ICP/MS

Dog 혈장 중 HPLC-ICP/MS를 이용한 비소 화학종 분석법 검증

  • Kim, Jong-Hwan (Environmental Toxicology Research Center, Korea Institute of Toxicology) ;
  • Kwon, Young Sang (Environmental Toxicology Research Center, Korea Institute of Toxicology) ;
  • Shin, Min-Chul (Environmental Toxicology Research Center, Korea Institute of Toxicology) ;
  • Kim, Su Jong (Pharmaceutical Division, Komipharm International Co. Ltd) ;
  • Seo, Jong-Su (Environmental Toxicology Research Center, Korea Institute of Toxicology)
  • 김종환 (안전성평가연구소 환경독성연구센터) ;
  • 권영상 (안전성평가연구소 환경독성연구센터) ;
  • 신민철 (안전성평가연구소 환경독성연구센터) ;
  • 김수정 ((주)코미팜 의약사업부) ;
  • 서종수 (안전성평가연구소 환경독성연구센터)
  • Received : 2016.08.11
  • Accepted : 2016.09.23
  • Published : 2016.10.25


The approach presented in this article refers to the bioanalytical method validation for the detection and quantitative determination of arsenic species including arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) in dog plasma by high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC-ICP/MS). The arsenic species were separated using an agilent As speciation column by a mobile phase of 2 mM sodium phosphate monobasic, 0.2 mM ethylenediaminetetraacetic acid disodium salt dehydrate, 10 mM sodium acetate, 3 mM sodium nitrate and 1 % ethyl alcohol at pH 11 (adjusted with 1M NaOH). The method validation experiment was obtained selectivity, linearity, accuracy, precision, matrix effect, recovery, system suitability, dilution integrity and various stabilities. All calibration curves showed good linearity (R2>0.999) within test ranges. The lower limit of quantitation (LLOQ) was 5 ng/mL for As(III), As(V) and DMA, and 20 ng/mL for MMA. The system suitability and dilution values were within 6.5 % and 7.7 %. Subsequently, the developed and validated HPLC-ICP/MS method was also successfully applied to determine the arsenic speciation in dog plasma samples, and the recoveries for the spiked samples were in the range of 91.5–102.2 %. Therefore, this method could be applied to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies in biological samples.


Arsenic speciation;Dog plasma;Method validation;HPLC-ICP/MS


  1. M. K. Paik, W. I. Kim, J. H. Yoo, J. K. Kim, M. J. Kim, G. J. Im, M. K. Hong and A. S. Om, J. Food Hyg. Safety, 25(1), 16-23 (2010).
  2. M. Y. Lee, B. I. Jung, S. M. Chung, O. N. Bae, J. Y. Lee, J. D. Park, J. S. Yang, H. Lee and J. H. Chung, Environ. Health Perspect., 111(4), 513-517 (2003).
  3. J. Mahata, A. Basu, S. Ghoshal, J. N. Sarkar, A. K. Roy, G. Poddar, A. K. Nandy, A. Banerjee, K. Ray, A. T. Natarajan, R. Nilsson and A. K. Giri, Mutat. Res., 534(1-2), 133-143 (2003).
  4. S. K. Lee, J. Y. Yang, K. W. Kim, S. Y. Lee, T. J. Kwon and Y. C. Yoo, J. Environ. Toxicol., 18, 101-109 (2003).
  5. H. K. Das, A. K. Mitra, P. K. Sengupta, A. Hossain, F. Islam and G. H. Rabbani, Environ. Int., 30(3), 383-387 (2004).
  6. J. W. Chen, H. Y. Chen, W. F. Li, S. H. Liou, C. J. Chen, J. H. Wu and S. L. Wang, Chemosphere, 84(1), 17-24 (2011).
  7. P. Bhattacharya, G. Jacks, K. M. Ahmed, J. Routh and A. A. Khan, Bull. Environ. Contam. Toxicol., 69(4), 538-545 (2002).
  8. R. Bhattacharyya, D. Chatterjee, B. Nath, J. Jana, G. Jacks and M. Vahter, Mol. Cell. Biochem., 253(1-2), 347-355 (2003).
  9. G. J. Jeong and D. C. Kim, Speciation analysis of arsenic species in surface water. J. Korean Soc. Environ. Eng., 30(6), 621-627 (2008).
  10. H. Choi, S. K. Park, D. S. Kim and M. H. Kim, Risk assessment of arsenic in agricultural products. Korean J. Environ. Agric., 29(3), 266-272 (2010).
  11. O. N. Bae, M. Y. Lee, S. M. Chung, J. H. Ha and J. H. Chung, J. Environ. Toxicol., 21(1), 1-11 (1986).
  12. K. Y. Ryu, S. L. Shim, I. M. Hwang, M. S. Jung, S. N. Jun, H. Y. Seo, J. S. Park, H, Y. Kim, A. S. Om, K. S. Park and K. S. Kim, Korean J. Food Sci. Technol., 41(1), 1-6 (2009).
  13. K. Y. Song, J. H. Park, Y. J. Cho, W. K. Baek, K. Y. Kwon, H. S. Kim and C. M. Kang, Korean J. Pediatr., 43(3), 327-334 (2000).
  14. E. Terlecka, Environ. Monit. Assess., 107(1-3), 259-284 (2005).
  15. A. M. Featherstone, E. C. Butler, B. V. O'Grady and P. Michel, J. Anal. At. Spectrom., 13(12), 1355-1360 (1998).
  16. T. Nakazato, T. Taniguchi, H. Tao, M. Tominaga and A. Miyazaki, J. Anal. At. Spectrom., 15(12), 1546-1552 (2000).
  17. S. K. Shin and T. S. Kim, Anal. Sci. Technol., 15(2), 1-38 (2002).
  18. S. Y. Lee, H. J. Oh, Y. H. Choi, J. W. Kim and S. H. Kim, Korean J. Lab. Med., 24(6), 362-370 (2004).
  19. Kim S. R. ‘Analytical method for lead and cadmium in whole blood by inductively coupled plasma-mass spectrometry and graphite furance atomic absorption spectrometry’ Ph. D. Dissertation, Soonchunhyang University, 2008.
  20. Kim Y. J. ‘The study on trace heavy metal analysis and arsenic speciation using ICP-MS (inductively coupled plasma-mass spectrometry)’ Ph. D. Dissertation, Korea University, 2011.
  21. S. B., Lee, J. S. Yang, S. B. Choi and H. S. Shin, Anal. Sci. Technol., 25(3), 190-196 (2012).
  22. Guideline for Industry on Bioanalytical Method Validation, FDA/CDER, May 2001.
  23. Guideline on Bioanalytical Method Validation, MFDS, Dec, 2013.