DOI QR코드

DOI QR Code

A DFT Study on Alkali and Alkaline Earth Metal Encapsulated Fullerene-Like BeO Cluster

  • Ravaei, Isa (Chemistry Department, Faculty of Sciences, Yasouj University) ;
  • Beheshtian, Javad (Chemistry Department, Faculty of Sciences, Shahid Rajaee University)
  • Received : 2017.03.22
  • Accepted : 2017.09.11
  • Published : 2017.12.20

Abstract

By using Density Functional Theory (DFT), we have performed alkali metal and alkaline earth metal inside fullerene-like BeO cluster (FLBeOC) in terms of energetic, geometric, charge transfer, work function and electronic properties. It has been found that encapsulated processes of the alkali metal are exothermic and thermodynamically more favorable than alkaline earth metal encapsulation, so that interaction energy ($E_{int}$) of the alkali metal encapsulation FLBeOC is in the range of -0.02 to -1.15 eV at level of theory. It is found that, the electronic properties of the pristine fullerene-like BeO cluster are much more sensitive to the alkali metal encapsulation in comparison to alkaline earth metal encapsulation. The alkali and alkaline earth metal encapsulated fullerene-like BeO cluster systems exhibit good sensitivity, promising electronic properties which may be useful for a wide variety of next-generation nano-sensor device components. The encapsulation of alkali and alkali earth metal may increase the electron emission current from the FLBeOC surface by reducing of the work function.

Keywords

Fullerene-like BeO cluster;Alkali and alkaline earth metal;Encapsulation;Density functional theory

Acknowledgement

Supported by : Korean Chemical Society

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. Nanotubes, C. Topics in Applied Physics 2001, 80, 113.
  3. Dai, H. Accounts of Chemical Research 2002, 35, 1035. https://doi.org/10.1021/ar0101640
  4. Chadli, H.; Fergani, F.; Bentaleb, M.; Fakrach, B.; Sbai, K.; Rahmani, A.; Bantignies, J.-L.; Sauvajol, J.-L. Physica E: Low-dimensional Systems and Nanostructures 2015, 71, 31. https://doi.org/10.1016/j.physe.2015.03.018
  5. Sbai, K.; Rahmani, A.; Fakrach, B.; Chadli, H.; Benhamou, M. Physica E: Low-dimensional Systems and Nanostructures 2014, 56, 312. https://doi.org/10.1016/j.physe.2013.10.003
  6. Beheshtian, J.; Soleymanabadi, H.; Peyghan, A. A.; Bagheri, Z. Applied Surface Science 2013, 268, 436. https://doi.org/10.1016/j.apsusc.2012.12.119
  7. Bayani, A. H.; Shahtahmassebi, N.; Fakhrabad, D. V. Physica E: Low-dimensional Systems and Nanostructures 2013, 53, 168. https://doi.org/10.1016/j.physe.2013.05.008
  8. Liu, J.; Zhong, D.; Xie, F.; Sun, M.; Wang, E.; Liu, W. Chemical Physics Letters 2001, 348, 357. https://doi.org/10.1016/S0009-2614(01)01113-7
  9. Sorokin, P.; Fedorov, A.; Chernozatonskii, L. Physics of the Solid State 2006, 48, 398. https://doi.org/10.1134/S106378340602034X
  10. He, J.; Wu, K.; Sa, R.; Li, Q.; Wei, Y. Applied Physics Letters 2010, 97, 051901. https://doi.org/10.1063/1.3473726
  11. Tsuji, M.; Abe, M. Solvent Extraction and Ion Exchange 1984, 2, 253. https://doi.org/10.1080/07366298408918447
  12. Corma, A.; Iborra, S. Advances in Catalysis 2006, 49, 239.
  13. Barsan, N.; Koziej, D.; Weimar, U. Sensors and Actuators B: Chemical 2007, 121, 18. https://doi.org/10.1016/j.snb.2006.09.047
  14. Salm, C.; Van Veen, D.; Gravesteijn, D.; Holleman, J.; Woerlee, P. Journal of the Electrochemical Society 1997, 144, 3665. https://doi.org/10.1149/1.1838067
  15. Joshi, K.; Jain, R.; Pandya, R.; Ahuja, B.; Sharma, B. The Journal of Chemical Physics 1999, 111, 163. https://doi.org/10.1063/1.479262
  16. Ren, L.; Cheng, L.; Feng, Y.; Wang, X. The Journal of Chemical Physics 2012, 137, 014309. https://doi.org/10.1063/1.4731808
  17. Wu, W.; Lu, P.; Zhang, Z.; Guo, W. ACS Applied Materials Interfaces 2011, 3, 4787. https://doi.org/10.1021/am201271j
  18. Sahariah, M. B.; Ghosh, S. Journal of Applied Physics 2010, 107, 083520. https://doi.org/10.1063/1.3359706
  19. Baumeier, B.; Kruger, P.; Pollmann, J. Physical Review B 2007, 75, 045323. https://doi.org/10.1103/PhysRevB.75.045323
  20. Ivanov, V.; Kirm, M.; Pustovarov, V.; Kruzhalov, 2007, 42, 742.
  21. Fathalian, A.; Moradian, R.; Shahrokhi, M. Solid State Communications 2013, 156, 1. https://doi.org/10.1016/j.ssc.2012.11.017
  22. Baima, J.; Erba, A.; Rerat, M.; Orlando, R.; Dovesi, R. The Journal of Physical Chemistry C 2013, 117, 12864. https://doi.org/10.1021/jp402071m
  23. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162. https://doi.org/10.1038/318162a0
  24. Lifshitz, C. Mass Spectrometry Reviews 1993, 12, 261. https://doi.org/10.1002/mas.1280120502
  25. Ansari, R.; Sadeghi, F. Physica E: Low-dimensional Systems and Nanostructures 2015, 69, 1. https://doi.org/10.1016/j.physe.2015.01.009
  26. Popov, A. A.; Yang, S.; Dunsch, L. Chemical Reviews 2013, 113, 5989. https://doi.org/10.1021/cr300297r
  27. Matxain, J. M.; Eriksson, L. A.; Formoso, E.; Piris, M.; Ugalde, J. M. The Journal of Physical Chemistry C 2007, 111, 3560.
  28. Deng, Q.; Popov, A. A. Journal of the American Chemical Society 2014, 136, 4257. https://doi.org/10.1021/ja4122582
  29. Behzadi, H.; Esrafili, M. D.; Manzetti, S.; Roonasi, P. Physica E: Low-dimensional Systems and Nanostructures 2014, 56, 69. https://doi.org/10.1016/j.physe.2013.08.005
  30. Li, J.; Yang, G. The Journal of Physical Chemistry C 2009, 113, 18292. https://doi.org/10.1021/jp9064592
  31. Anota, E. C.; Cocoletzi, G. H. Journal of Molecular Graphics and Modelling 2013, 42, 115. https://doi.org/10.1016/j.jmgm.2013.03.007
  32. Yu, B.-R.; Yang, J.-W.; Guo, H.-Z.; Ji, G.-F.; Chen, X.-R. Physica B: Condensed Matter 2009, 404, 1940. https://doi.org/10.1016/j.physb.2009.03.015
  33. Ma, L.-C.; Zhao, H.-S.; Yan, W.-J. Journal of Magnetism and Magnetic Materials 2013, 330, 174. https://doi.org/10.1016/j.jmmm.2012.11.001
  34. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. Journal of Computational Chemistry 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  35. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Montgomery Jr, J.; Vreven, T.; Kudin, K.; Burant, J. Gaussian 03, rev. C. 02, Gaussian, Inc., Wallingford CT, (2004).
  36. Hohenstein, E. G.; Chill, S. T.; Sherrill, C. D. Journal of Chemical Theory and Computation 2008, 4, 1996. https://doi.org/10.1021/ct800308k
  37. Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. The Journal of Physical Chemistry A 2001, 105, 8111. https://doi.org/10.1021/jp011945l
  38. Sun, W.; Bu, Y.; Wang, Y. The Journal of Physical Chemistry C 2011, 115, 3220. https://doi.org/10.1021/jp108812z
  39. Umadevi, D.; Sastry, G. N. ChemPhysChem 2013, 14, 2570. https://doi.org/10.1002/cphc.201300089
  40. Zhao, Y.; Truhlar, D. G. Theoretical Chemistry Accounts 2008, 120, 215. https://doi.org/10.1007/s00214-007-0310-x
  41. O'boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Journal of Computational Chemistry 2008, 29, 839. https://doi.org/10.1002/jcc.20823
  42. Okumura, M.; Kitagawa, Y.; Haruta, M.; Yamaguchi, K. Chemical Physics Letters 2001, 346, 163. https://doi.org/10.1016/S0009-2614(01)00957-5
  43. Mills, G.; Gordon, M. S.; Metiu, H. Chemical Physics Letters 2002, 359, 493. https://doi.org/10.1016/S0009-2614(02)00746-7
  44. Simchi, H.; Esmaeilzadeh, M.; Saani, M. H. Physica E: Low-dimensional Systems and Nanostructures 2012, 44, 1675. https://doi.org/10.1016/j.physe.2012.04.018
  45. Geerlings, P.; De Proft, F.; Langenaeker, W. Chemical Reviews 2003, 103, 1793. https://doi.org/10.1021/cr990029p
  46. Mulliken, R. The Journal of Chemical Physics 1955, 23, 1841. https://doi.org/10.1063/1.1740589
  47. Baumeier, B.; Krüger, P.; Pollmann, J. Physical Review B 2007, 76, 085407. https://doi.org/10.1103/PhysRevB.76.085407
  48. Shinde, R.; Tayade, M. The Journal of Physical Chemistry C 2014, 118, 17200. https://doi.org/10.1021/jp4109943
  49. Karamanis, P.; Pouchan, C. The Journal of Physical Chemistry C 2012, 116, 11808. https://doi.org/10.1021/jp3026573
  50. Buffinger, D.; Ziebarth, R.; Stenger, V.; Recchia, C.; Pennington, C. Journal of the American Chemical Society 1993, 115, 9267. https://doi.org/10.1021/ja00073a049
  51. Li, Y.; Zhou, G.; Li, J.; Gu, B.-L.; Duan, W. The Journal of Physical Chemistry C 2008, 112, 19268. https://doi.org/10.1021/jp807156g
  52. Chandrakumar, K.; Ghosh, S. K. Nano Letters 2008, 8, 13. https://doi.org/10.1021/nl071456i
  53. Peyghan, A. A.; Hadipour, N. L.; Bagheri, Z. Journal of Physical Chemistry C 2013, 117, 2427.