DOI QR코드

DOI QR Code

Growth Kinetics and Electronic Properties of Passive Film of Cobalt in Borate Buffer Solution

Borate 완충용액에서 코발트 산화피막의 생성 과정과 전기적 성질

  • Park, Hyunsung (Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies) ;
  • Kim, Younkyoo (Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies)
  • 박현성 (한국외국어대학교 자연과학대학 화학과) ;
  • 김연규 (한국외국어대학교 자연과학대학 화학과)
  • Received : 2017.05.17
  • Accepted : 2017.09.22
  • Published : 2017.12.20

Abstract

In a borate buffer solution, the growth kinetics and the electronic properties of passive film on cobalt were investigated, using the potentiodynamic method, chronoamperometry, and single-frequency electrochemical impedance spectroscopy. It was found out that the unstable passive film ($Co(OH)_2$) and CoO of Co formed in the low electrode potential changes to $Co_3O_4$ and CoOOH while the electrode potential increases. And the composition of the passive films was varied against the applied potential and oxidation time. The oxide film formed during the passivation process of cobalt has showed the electronic properties of p-type semiconductor, which follow from the Mott-Schottky equation.

Keywords

Cobalt;Corrosion;Passivation;p-Type semiconductor;Mott-Schottky

Acknowledgement

Supported by : 한국외국어대학교

References

  1. Heusler, K. E. Corros. Sci. 1966, 6, 183. https://doi.org/10.1016/S0010-938X(66)80008-2
  2. Chon, J.-K.; Paik, W. J. Kor. Chem. Soc. 1974, 18, 391.
  3. Behl, W. K.; Toni, J. E. J.Electroanal. Chem. 1971, 31, 63. https://doi.org/10.1016/S0022-0728(71)80043-8
  4. Burnstein, G. T.; Davies, D. H. Corros. Sci. 1980, 20, 989.
  5. Sazou, D.; Pagitsas, M. J. Electroanal. Chem. 1991, 304. 171. https://doi.org/10.1016/0022-0728(91)85500-O
  6. Badawy, W. A.; Al-Kharafi, F. M.; Al-Ajimi, J. R. J. Appl. Electrochem. 2000, 30, 693 https://doi.org/10.1023/A:1003893122201
  7. Foelske, A.; Strehblow, H. H. Surf. Interface Anal. 2000. 29, 548. https://doi.org/10.1002/1096-9918(200008)29:8<548::AID-SIA902>3.0.CO;2-Q
  8. Foelske, A.; Strehblow, H.-H. Surf. Interface Anal. 2002, 34, 125. https://doi.org/10.1002/sia.1267
  9. Contu. F.; Elsner, B.; Behnei, H. Corros. Sci. 2005, 47, 1863. https://doi.org/10.1016/j.corsci.2004.09.003
  10. Gallant, D.; Simard, S. Corros. Sci. 2005, 47, 1810. https://doi.org/10.1016/j.corsci.2004.08.008
  11. Pontinha, M.; Faty, S.; Walls, H.G.; Ferreira, M.G.S.; Da Cunha Belo, M. Corros. Sci. 2006, 48, 2971. https://doi.org/10.1016/j.corsci.2005.10.007
  12. Gallant, D.; Pezolet, M.; Simard, S. J. Phys. Chem. B 2006, 110, 6871. https://doi.org/10.1021/jp056689h
  13. Gallant, D.; Pezolet, M.; Simard, S. Electrochim. Acta 2007, 52, 4927. https://doi.org/10.1016/j.electacta.2007.01.057
  14. Kim, Y.; Chon, J.-K. J. Kor. Chem. Soc. 2007, 51, 479. https://doi.org/10.5012/jkcs.2007.51.6.479
  15. Wang, L.; Lin, Y.; Zenga, Z.; Liu, W.; Xue, Q.; Hu, L.; Zhang J. Electrochimica Acta 2007, 52, 4342. https://doi.org/10.1016/j.electacta.2006.12.009
  16. Real, S. G.; Ribotta, S. B.; Arvia, A. J. Corros. Sci. 2008, 50, 463. https://doi.org/10.1016/j.corsci.2007.07.001
  17. Calderon, J. A.; Barcia, O. E.; Mattos, O. R. Corros. Sci. 2008, 50, 2101. https://doi.org/10.1016/j.corsci.2008.04.013
  18. Schuberta, N.; Schneiderb, M.; Michealisa, A. Electrochim. Acta 2013, 113, 748. https://doi.org/10.1016/j.electacta.2013.06.093
  19. Chen, J.; Selloni, A. J. Phys. Chem. C 2013, 117, 20002. https://doi.org/10.1021/jp406331h
  20. Kim, Y. J. Kor. Chem. Soc. 2014, 58, 437. https://doi.org/10.5012/jkcs.2014.58.5.437
  21. Qorbani, M.; Naseri, N.; Moshfegh, A. Z. ACS Appl. Mater. Interfaces 2015, 7, 11172. https://doi.org/10.1021/acsami.5b00806
  22. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications, 2nd Ed.; John-Wiley: New York, 2001; Chap. 6.
  23. Chon, J.-K.; Kim, Y. J. Kor. Chem. Soc. 2010, 54, 380. https://doi.org/10.5012/jkcs.2010.54.4.380
  24. Kim, J.; Pyun, S. Electrochim. Acta 1995, 40, 1863. https://doi.org/10.1016/0013-4686(95)94180-3
  25. Gebert, A.; Wolff, U.; John, A.; Eckert, J.; Schultz, L. Mater. Sci. Eng. A 2001, 299, 125. https://doi.org/10.1016/S0921-5093(00)01401-5
  26. Flis, J.; Flis-Kabulska, I.; Zkrczymski, T. Electrochim. Acta 2009, 54, 1810. https://doi.org/10.1016/j.electacta.2008.10.003
  27. Menga, G.; Suna, F.; Shao, Y.; Zhang, T.; Wang, F.; Dong, C.; Li, X. Electrochim. Acta 2010, 55, 2575. https://doi.org/10.1016/j.electacta.2009.12.027
  28. Chung, S.; Kim, Y. J. Kor. Chem. Soc. 2012, 56, 47. https://doi.org/10.5012/jkcs.2012.56.1.047
  29. Kim,Y. J. Kor. Chem. Soc. 2014, 58, 9. https://doi.org/10.5012/jkcs.2014.58.1.9
  30. Lide, D. R. CRC Handbook of Chemistry and Physics, 76th Ed.; CRC: Boca Raton, 1995; 4-53, 4-54.
  31. Chivot, J.; Mendoza, L.; Mansour, C.; Pauporte, T.; Cassir, M. Corros. Sci. 2008, 50, 62. https://doi.org/10.1016/j.corsci.2007.07.002
  32. Kim, H.; Kim. Y. J. Kor. Chem. Soc. 2012, 56, 542. https://doi.org/10.5012/jkcs.2012.56.5.542
  33. Peskov, Y. V. Electric double layer on semiconductor electrode. In Comprehensive Treatise of Electrochemistry, Vol.1, Chapter 6; Bockris, J.O'M.; Conway, B.E.; Yeager, E., Eds.; Plenum Press: New York, 1980.
  34. Sikora, E.; Macdonald, D. D. Electrochim. Acta 2002, 48, 69. https://doi.org/10.1016/S0013-4686(02)00552-2
  35. Bott, A. W. Current Separations 1998, 17, 87.
  36. Macdonald, D. D.; Sikora, E.; Engelhardt, G. Electrochim. Acta 1998, 43, 87. https://doi.org/10.1016/S0013-4686(97)00238-7
  37. Wang, Q. J.; Zheng, M. S.; Zhu, J. W. Thin Solid Films 2009, 517, 1995. https://doi.org/10.1016/j.tsf.2008.10.045
  38. Wang, H.; Pilon, L. Electrochim. Acta 2012, 63, 55. https://doi.org/10.1016/j.electacta.2011.12.051
  39. Rao, K. B.; Smakula, A. J. Appl. Phys. 1965, 36, 1031 https://doi.org/10.1063/1.1714087
  40. Salek, G.; Alphonse, P.; Dufour, P.; Guillemet-Fritsch, S.; Tenailleau. C. Appl. Catal., B 2014, 147, 1. https://doi.org/10.1016/j.apcatb.2013.08.015