DOI QR코드

DOI QR Code

Theoretical Investigation for the Structures and Binding Energies of H2O3 and Water (H2O) Clusters

H2O3과 물(H2O) 클러스터들의 분자구조와 열역학적 안정성에 대한 이론적 연구

  • 서현일 (한남대학교 생명나노과학대학 화학과) ;
  • 김종민 (한남대학교 생명나노과학대학 화학과) ;
  • 송희성 (한남대학교 생명나노과학대학 화학과) ;
  • 김승준 (한남대학교 생명나노과학대학 화학과)
  • Received : 2017.08.18
  • Accepted : 2017.09.22
  • Published : 2017.12.20

Abstract

The density functional theory(DFT) and ab initio calculations have been applied to investigate hydrogen interaction of $H_2O_3(H_2O)_n$ clusters(n=1-5). The structures, IR spectra, and H-bonding energies are calculated at various levels of theory. The $trans-H_2O_3$ monomer is predicted to be thermodynamically more stable than cis form at the CCSD(T)/cc-pVTZ level of theory. For clusters, the geometries are optimized at the MP2/cc-pVTZ level of theory. The binding energy of $H_2O_3-H_2O$ cluster is predicted to be -6.39 kcal/mol at the CCSD(T)//MP2/cc-pVTZ level of theory after zero-point vibrational energy (ZPVE) and basis set superposition error (BSSE) correction. This result implies that $H_2O_3$ is a stronger proton donor(acid) than either $H_2O$ or $H_2O_2$. The average binding energies per $H_2O$ are predicted to be 8.25 kcal/mol for n=2, 7.22 kcal/mol for n=3, 8.50 kcal/mol for n=4, and 8.16 kcal/mol for n=5.

Keywords

Hydrogen polyoxide;$H_2O_3(H_2O)_n$ clusters;Hydrogen bond;DFT

Acknowledgement

Supported by : 한남대학교

References

  1. Levanov, A. V.; Sakharov, D. V.; Dashkova, A. V.; Antipenko, E. E.; Lunin, V. V. Eur. J. Inorg. Chem. 2011, 33, 5144.
  2. Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. Rev. 1992, 92, 667. https://doi.org/10.1021/cr00012a008
  3. Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman, G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. Environ. A-gen. 1992, 26, 1805 https://doi.org/10.1016/0960-1686(92)90423-I
  4. Wentworth, Jr. P.; Wentworth, A. D.; Zhu, X.; Wilson, I. A.; Janda, K. D.; Eschenmoser, A.; Lerner, R. A. Proc. Natl. Acad. Sci. 2003, 100, 1490. https://doi.org/10.1073/pnas.0437831100
  5. Shukla, P. K.; Mishra, P. C. J. Phys. Chem. B 2007, 111, 4603. https://doi.org/10.1021/jp070399e
  6. Berthelot, M. Compt. Rend. 1880, 90, 656.
  7. Bielski, B. H. J.; Schwarz, H. A. J. Phys. Chem. 1968, 72, 3836. https://doi.org/10.1021/j100857a024
  8. Plesnicar, B. Acta Chim. Slov. 2005, 52, 1.
  9. Engdahl, A.; Nelander, B. Science 2002, 295, 482. https://doi.org/10.1126/science.1067235
  10. Xu, X.; Goddard, W. A., III. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15308. https://doi.org/10.1073/pnas.202596799
  11. Wu, A.; Cremer, D.; Gauss, J. J. Phys. Chem. A 2003, 107, 8737. https://doi.org/10.1021/jp030697l
  12. Plesnicar, B.; Tuttle, T.; Cerkovnik, J.; Cremer, D. J. Am. Chem. Soc. 2003, 125, 11553. https://doi.org/10.1021/ja036801u
  13. Lesko, T. M.; Colussi, A. J.; Hoffmann, M. R. J. Am. Chem. Soc. 2004, 126, 4432. https://doi.org/10.1021/ja038907v
  14. Tuttle, T.; Cerkovnik, J.; Plesnicar, B.; Cremer, D. J. Am. Chem. Soc. 2004, 126, 16093. https://doi.org/10.1021/ja0450511
  15. Suma, K.; Sumiyoshi, Y.; Endo, Y. J. Am. Chem. Soc. 2005, 127, 14998. https://doi.org/10.1021/ja0556530
  16. Maetzke, A.; Jensen, S. J. K. Chem. Phys. Lett. 2006, 425, 40. https://doi.org/10.1016/j.cplett.2006.04.097
  17. Cerkovnik, J.; Tuttle, T.; Kraka, E.; Lendero, N.; Plesnicar, B.; Cremer, D. J. Am. Chem. Soc. 2006, 128, 4090. https://doi.org/10.1021/ja058065v
  18. Denis, P. A.; Ornella, F. R. J. Phys. Chem. A 2009, 113, 499. https://doi.org/10.1021/jp808795e
  19. Hollman, D. S.; Schaefer III, H. F. J. Chem. Phys. 2012, 136, 084302. https://doi.org/10.1063/1.3684231
  20. Levanov, A. V.; Oksana, Y. I.; Ewald, E. A.; Valerii, V. L. Chem. Phys. 2015. 447, 10. https://doi.org/10.1016/j.chemphys.2014.11.020
  21. Kovacic, S.; Koller, J.; Janez Cerkovnik, J.; Tell Tuttle, T.; Plesnicar, B. J. Phys. Chem. A 2008, 112, 8129.
  22. Solís-Calero, C.; Ortega-Castro, J.; Munoz.; F. J. Phys. Chem. C 2011, 115, 22945. https://doi.org/10.1021/jp2064134
  23. Aloisio, S.; Francisco, J. S. J. Am. Chem. Soc. 1999, 121, 8592. https://doi.org/10.1021/ja991001y
  24. Chalmet, S.; Ruiz-Lopez, M. F. ChemPhysChem. 2006, 7, 463. https://doi.org/10.1002/cphc.200500326
  25. Cannon, D.; Tuttle, T.; Koller, J.; Plesnicar, B. Comp. Theor. Chem. 2013, 1010, 19. https://doi.org/10.1016/j.comptc.2013.01.009
  26. Liang, T.; Raston, P. L.; Douberly, G. E. ChemPhysChem. 2013, 14, 764. https://doi.org/10.1002/cphc.201200712
  27. Anglada, J. M.; Hoffman, G. J.; Slipchenko, L. Y.; Costta, M. M.; Ruiz-Lopez, M. F.; Francisco, J. S. J. Phys. Chem. A 2013, 117, 10381. https://doi.org/10.1021/jp407282c
  28. Kulkarni, S. A.; Bartolotti, L. J.; Pathak, R. K. Chem. Phys. Lett. 2003, 372, 620. https://doi.org/10.1016/S0009-2614(03)00468-8
  29. Becke, A. D. J. Chem. Phys., 1993, 98, 5648. https://doi.org/10.1063/1.464913
  30. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011
  31. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. https://doi.org/10.1063/1.456153
  32. Boys, S. F.; Bernardi, F.; Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  33. Tarakeshwar, P.; Choi, H. S.; Lee, S. J.; Lee, J.Y.; Kim, K. S.; Ha, T.; Jang, J. H.; Lee, J. G.; Lee, H. J. Chem. Phys. 1999, 111, 5838. https://doi.org/10.1063/1.479879
  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.
  35. Hincapie, G.; Acelas, N.; Castano, M.; David, J.; Restrepo, A. J. Phys. Chem. A. 2010, 114, 7809. https://doi.org/10.1021/jp103683m
  36. Song, H. S.; Seo, H. I.; Shin, C. H.; Kim, S. J. J. Kor. Chem. Soc. 2015, 59, 117. https://doi.org/10.5012/jkcs.2015.59.2.117
  37. Kulkarni, A. D.; Pathak, R. K.; Bartolotti, L. J. J. Phys. Chem. A 2005, 109, 4583. https://doi.org/10.1021/jp044545h
  38. Martins-Costa, M.; Anglada, J. M.; Ruiz-Lopez, M. F. Int. J. Quantum. Chem. 2011, 111, 1543. https://doi.org/10.1002/qua.22695
  39. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
  40. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. https://doi.org/10.1063/1.462569