Adsorption of Cd on Carbonaceous Adsorbent Developed from Automotive Waste Tire

자동차 폐타이어로부터 발달된 탄소질 흡착제에 의한 Cd의 흡착

  • Kim, Younjung (Center for Instrumental Analysis, Andong National University) ;
  • Uh, Eun Jeong (Department of Applied Chemistry, Andong National University) ;
  • Choi, Jong Ha (Department of Applied Chemistry, Andong National University) ;
  • Hong, Yong Pyo (Department of Applied Chemistry, Andong National University) ;
  • Kim, Daeik (School of Electrical, Electronic Communication, and Computer Engineering, Chonnam National University) ;
  • Ryoo, Keon Sang (Department of Applied Chemistry, Andong National University)
  • 김연정 (안동대학교 공동실험실습관) ;
  • 우은정 (안동대학교 응용화학과) ;
  • 최종하 (안동대학교 응용화학과) ;
  • 홍용표 (안동대학교 응용화학과) ;
  • 김대익 (전남대학교 전기전자통신컴퓨터공학부) ;
  • 유건상 (안동대학교 응용화학과)
  • Received : 2017.09.13
  • Accepted : 2017.11.02
  • Published : 2017.12.20


Carbonaceous adsorbent (CA-WTP) was prepared by heat treatment at $400^{\circ}C$ for 2 h in N2 atmosphere using waste tire powder (WTP). WTP and CA-WTP were first characterized by thermo-gravimetric analysis (TGA), energy dispersive X-ray spectrometer (EDS), scanning electron microscopy (SEM), specific surface area analysis (BET) and FT-IR spectroscopy. Then, they were tested as adsorbents for removal of Cd in water. CA-WTP exhibited much higher specific surface area and total pore volume than WTP itself and showed higher adsorption capacity for Cd. Equilibrium data of adsorption were analyzed using Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicate that CA-WTP developed from WTP by heat treatment could be used as efficient adsorbent for the removal Cd from water.


Supported by : 한국과학재단


  1. Alexandre-Franco, M.; Fernandez-Gonzalez, C.; Alfaro-Dominguez, M.; Gomez-Serrano, V. J. Environ. Manage. 2011, 92, 2193.
  2. Gupta, V. K.; Ganjali, M. R.; Nayak, A.; Bhushan, B. Agarwal, S. Chem. Eng. J. 2012, 197, 330.
  3. Nieto-Marquez, A.; Pinedo-Flores, A.; Picasso, G.; Atanes, E.; Kou, R. S. J. Environ. Chem. Eng. 2017, 5, 1060.
  4. LIanos, J.; Camarillo, R.; Perez, A.; Canizares, P. Purif. Technol. Sep. 2010, 73, 126.
  5. Kwon, J. S.; Yun, S. T.; Lee, S. O.; Kim, H. Y.; Jo, J. J. Hazard. Mater. 2010, 174, 307.
  6. Imyim, A.; Sirithaweesit, T.; Ruangpornvisuti, V. J. Environ. Manage. 2016, 166, 574.
  7. 7. Kim, J. K.; Hwang, S. H.; Lee, S. H.; Jung, J. H. J. Kor. Inst. Res. Recycling 2003, 12, 28.
  8. Lee, J. Y. J. Korea Tire Manufactures Association 2005, 1, 41.
  9. Ayanoglu, A.; Yumrutas, R. Energy 2016, 103, 456.
  10. Aoudia, K.; Azem, S.; Hocine, N. A.; Gratton, M.; Pettarin, V.; Seghar, S. Waste Manage. 2017, 60, 471.
  11. Lu, Q.; Alves de Toledo, R.; Xie, Fei.; Li, J.; Shim, H. Sci. Tot. Environ. 2017, 583, 88.
  12. Luo, S.; Feng, Y. Energy Conver. Manage. 2017, 136. 27.
  13. Lian, Fei.; Huang, F.; Chen, W.; Xing, B.; Zhu, L. Environ. Pollu. 2011, 159, 850.
  14. Acevedo, B.; Carmen, B. Fuel Process Technol. 2015, 134, 275.
  15. Troca-Torrado, C.; Alexandre-Franco, M.; Fernandez Gonzalez, C.; Alfaro-Dominguez, M.; Gomez-Serrano, V. Fuel Process Technol. 2011, 92, 206.
  16. Gupta, V. K.; Nayak, A.; Agawal, S.; Tyagi, I. J. Colloid Inter. Sci. 2014, 417, 420.
  17. Acosta, R.; Fierro, V.; Martinez de Yuso, A.; Nabarlatz, D.; Celzard, A. Chemosphere 2016, 149, 168.
  18. Makrigianni, V.; Giannakas, A.; Deligiannakis, Y.; Konstantinou, I. J. Environ. Chem. Engineer. 2015, 3, 574.
  19. Jeong, Y. K.; Min, D. K.; O, H. J. J. Kor. Soil Soc. 1986, 6, 34.
  20. Lee, Y. D.; Ko, D. Y. Environ. Eng. Res. 2007, 29. 357.