DOI QR코드

DOI QR Code

The Effect of Wettability and Protein Adsorption of Contact Lens by Alginic Acid

알긴산에 의한 콘택트렌즈의 습윤성과 단백질 흡착 효과

  • Ko, Na Young (Department of Optometry & Vision Science, Catholic University of Daegu) ;
  • Lee, Kyung Mun (Vision Science CO. LTD) ;
  • Lee, Hyun Mee (Department of Optometry & Vision Science, Catholic University of Daegu)
  • 고나영 (대구가톨릭대학교 안경광학과) ;
  • 이경문 ((주)비젼사이언스) ;
  • 이현미 (대구가톨릭대학교 안경광학과)
  • Received : 2017.09.11
  • Accepted : 2017.10.17
  • Published : 2017.12.20

Abstract

The addition of alginic acid, a natural polysaccharide, to improve the wettability and the reduction of protein adsorption of hydrogel contact lenses. Hydrogel contact lenses were manufactured with various monomers such as 2-methacryloyloxyethyl phosphorylcholine (MPC) and NVP (N-Vinyl-2-pyrrolidone). Alginic acid was added by by the initial mixing method and the interpenetrating polymer networks(IPN) method. Properties of contact lens such as contact angle, oxygen permeability, and protein adsorption amount were evaluated. The oxygen permeability and wettability of the IPN-treated alginate samples were higher than those of the samples that were not treated with IPN. The physical properties were improved as the concentration of IPN-treated alginic acid increased. Protein adsorption decreased by the addition of alginic acid and further decreased with IPN. In particular, contact lenses containing MPC and NVP significantly decreased protein adsorption. Therefore, the effect of alginate on the functional improvement of contact lens was confirmed.

Keywords

Alginic acid;Wettability;Oxygen permeability;Protein adsorption;IPN

Acknowledgement

Supported by : 중소기업정보진흥원

References

  1. Bruinsma, G. M.; van der Mei, H. C.; Busscher, H. J. Biomaterials 2001, 22, 3217. https://doi.org/10.1016/S0142-9612(01)00159-4
  2. Boost, M.; Poon, K. C.; Cho, P. Optom. Vis. Sci. 2011, 88, 1409.
  3. Brennan, N. A.; Coles, M. C. Int. Contact Lens Clin. 2000, 27, 75. https://doi.org/10.1016/S0892-8967(01)00060-8
  4. Lord, M. S.; Stenzel, M. H.; Simmons, A.; Milthorpe, B. K. Biomaterials 2006, 27, 1341. https://doi.org/10.1016/j.biomaterials.2005.09.007
  5. Keith, D.; Hong, B.; Christensen, M. Curr. Eye Res. 1997, 16, 503. https://doi.org/10.1076/ceyr.16.5.503.7049
  6. Garrett, Q.; Laycock, B.; Garrett, R. W. Invest. Ophthalmol. Vis. Sci. 2000, 41, 1687.
  7. Woodward G. Optometry Today 1999, 2, 27.
  8. Smidsrod, O.; Skjak-Braek, G. Trends Biotechnol. 1990, 8, 7,78. https://doi.org/10.1016/0167-7799(90)90140-S
  9. Mumper, R. J.; Huffman, A. S.; Puolakkainen, P. A.; Bouchard, L. S.; and Gombotz, W. R. J. Controlled Release. 1994, 30, 241. https://doi.org/10.1016/0168-3659(94)90030-2
  10. Goh, C. H.; Heng, P. W. S.; Chan, L. W. Carbohydrate Polymers 2012, 88, 1. https://doi.org/10.1016/j.carbpol.2011.11.012
  11. Kim, S. J.; Park, S. J.; Kim, S. I. React. Funct. Polym. 2003, 55, 53. https://doi.org/10.1016/S1381-5148(02)00214-6
  12. Hirota, K.; Murakami, K.; Nemoto, K.; Miyake, Y. FEMS Microbiol. Lett. 2005, 248, 37. https://doi.org/10.1016/j.femsle.2005.05.019
  13. Lewis, A. L. Colloids Surf. B. 2000, 18, 261. https://doi.org/10.1016/S0927-7765(99)00152-6
  14. Goda, T.; Matsuno, R.; Konno, T.; Takai, M.; Ishihara, K. Colloids Surf. B 2008, 63, 64. https://doi.org/10.1016/j.colsurfb.2007.11.014
  15. Kharas, G. B. J. Appl. Polym. Sci. 1988, 35, 733. https://doi.org/10.1002/app.1988.070350314
  16. Garciaa, J.; Ruiz-Durantezb, E.; Valderrutena, N. E. React. Funct. Polym. 2017, 117, 52. https://doi.org/10.1016/j.reactfunctpolym.2017.06.002
  17. Ignat, L.; Stanciu, A. Advanced polymers: interpenetrating polymer networks. In Handbook of Polymer Blends and Composite; Kulshreshtha, A. K., Vasile, C. Eds.; iSmithers Rapra Publishing: 2003, 3, 275.
  18. Lohani, A.; Singh, G.; Bhattacharya, S. S.; Verma, A. J. Drug Deliv. 2014, 583612, 11.
  19. Gao, B.; Hu, H.; Guo, J.; Le, Y. Colloids Surf. B 2010, 77, 206. https://doi.org/10.1016/j.colsurfb.2010.01.025
  20. Hennink, W. E.; Talsma, H.; Borchert, J. C. H.; De Smedt, S.C.; Demeester, J. J. Controlled release. 1996, 39, 47. https://doi.org/10.1016/0168-3659(95)00132-8
  21. Cheng, L.; Muller, S. J.; Radke, C. J. Curr. Eye Res. 2004, 28, 93. https://doi.org/10.1076/ceyr.28.2.93.26231
  22. Cho, S. A.; Kim, T. H.; Sung, A. Y. Bull. Korean Chem. Soc. 2011, 55, 283. https://doi.org/10.5012/jkcs.2011.55.2.283
  23. Park, S. U.; Lee, B. K.; Kim, M. S.; Park, K. K.; Sung, W. J.; Kim, H. Y.; Kim, P. C.; Shim, J. S.; Lee, Y. J.; Kim, S. H.; Kim, I. H. J. Korean Soc. Plast. Reconstr. Surg. 2011, 38, 733.
  24. Nicolson, P. C.; Vogt J. Biomaterials 2001, 22, 3273. https://doi.org/10.1016/S0142-9612(01)00165-X
  25. Morgan, P. B.; Efron, N. Eye & Contact Lens. 2003, 29, 173. https://doi.org/10.1097/01.ICL.0000072825.23491.59
  26. Lee, J. Y.; Lee, J. I.; Kim, S. R.; Park, M. J. J. Korean Ophthalmic Opt. Soc. 2017, 22, 97. https://doi.org/10.14479/jkoos.2017.22.2.97
  27. Bae, S. E.; Park, K. D.; Han, D. K. Biomaterials Research 2008, 12, 167.
  28. Lee, H. M.; Kim, J. K.; Cho, T. S. Bull. Korean Chem. Soc. 2011, 32, 4239. https://doi.org/10.5012/bkcs.2011.32.12.4239
  29. Prime, K. L.; Whitesides, G. M. Science 1991, 252, 1164.