DOI QR코드

DOI QR Code

Ethyl acetate fraction from Pteridium aquilinum ameliorates cognitive impairment in high-fat diet-induced diabetic mice

고지방 식이로 유도된 실험동물의 당뇨성 인지기능 장애에 대한 고사리 아세트산에틸 분획물의 개선효과

  • Kwon, Bong Seok (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Guo, Tian Jiao (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jong Min (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Sang Hyun (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Jeong Eun (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Chang Jun (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Uk (Division of Special Purpose Tree, National Institute of Forest Science) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21 plus), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 권봉석 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 궈텐쟈오 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 박선경 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 김종민 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 강진용 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 박상현 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 강정은 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 이창준 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원) ;
  • 이욱 (국립산림과학원 특용자원연구과) ;
  • 허호진 (경상대학교 응용생명과학부(BK21 plus).농업생명과학연구원)
  • Received : 2017.06.09
  • Accepted : 2017.07.15
  • Published : 2017.12.31

Abstract

The potential of the ethyl acetate fraction from Pteridium aquilinum (EFPA) to improve the cognitive function in high-fat diet (HFD)-induced diabetic mice was investigated. EFPA-treatment resulted in a significant improvement in the spatial, learning, and memory abilities compared to the HFD group in behavioral tests, including the Y-maze, passive avoidance, and Morris water maze. The diabetic symptoms of the EFPA-treated groups, such as fasting glucose and glucose tolerance, were alleviated. The administration of EFPA reduced the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) content in mice brains, but increased the acetylcholine (ACh) and superoxide dismutase (SOD) levels. Finally, kaempferol-3-o-glucoside, a major physiological component of EFPA, was identified by using high-performance liquid chromatography coupled with a hybrid triple quadrupole-linear ion trap mass spectrometer (QTRAP LC-MS/MS).

Keywords

cognitive function;diabetes;high-fat diet;Pteridium aquilinum

Acknowledgement

Supported by : 한국연구재단

References

  1. Feng LJ, Yu CH, Ying KJ, Hua J, Dai XY. Hypolipidemic and antioxidant effects of total flavonoids of Perilla Frutescens leaves in hyperlipidemia rats induced by high-fat diet. Food Res. Int. 44: 404-409 (2011) https://doi.org/10.1016/j.foodres.2010.09.035
  2. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature 414: 782-787 (2001) https://doi.org/10.1038/414782a
  3. Hwang EY, Hong JH, Choi JH, Choi EJ, Lee IS. Study on antiobesity and hypoglycemic effects of Lycium chinense Mill extracts. J. Korean Soc. Food Sci. Nutr. 38: 1528-1534 (2009) https://doi.org/10.3746/jkfn.2009.38.11.1528
  4. Woods SC, Seeley RJ, Rushing PA, D'Alessio D, Tso P. A controlled high-fat diet induces an obese syndrome in rats. J. Nutr. 133: 1081-1087 (2003) https://doi.org/10.1093/jn/133.4.1081
  5. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840-846 (2006) https://doi.org/10.1038/nature05482
  6. Brownlee M. The pathobiology of diabetic complications. Diabetes 54: 1615-1625 (2005) https://doi.org/10.2337/diabetes.54.6.1615
  7. Ma W, Yuan L, Yu H, Xi Y, Xiao R. Mitochondrial dysfunction and oxidative damage in the brain of diet-induced obese rats but not in diet-resistant rats. Life Sci. 110: 53-60 (2014) https://doi.org/10.1016/j.lfs.2014.07.018
  8. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23: 599-622 (2002) https://doi.org/10.1210/er.2001-0039
  9. Yi MR. Lim SB. Antioxidative and anti-inflammatory activities of Pteridium aquilinum in LPS-stimulated RAW 264.7 cells. J. Agr. Life Sci. 49: 209-219 (2015) https://doi.org/10.14397/jals.2015.49.4.209
  10. Xu W, Zhang F, Luo Y, Ma L, Kou X, Huang K. Antioxidant activity of a water-soluble polysaccharide purified from Pteridium aquilinum. Carbohyd. Res. 344: 217-222 (2009) https://doi.org/10.1016/j.carres.2008.10.021
  11. Kardong D, Upadhyaya S, Saikia LR. Screening of phytochemicals, antioxidant and antibacterial activity of crude extract of Pteridium aquilinum Kuhn. J. Pharm. Res. 6: 179-182 (2013)
  12. Kang JY, Park SK, Guo TJ, Ha JS, Lee DS, Kim JM, Lee U, Kim DO, Heo HJ. Reversal of trimethyltin-induced learning and memory deficits by 3, 5-dicaffeoylquinic acid. Oxid. Med. Cell. Longev. 2016: 6981595 (2016)
  13. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Meth. 11: 47-60 (1984) https://doi.org/10.1016/0165-0270(84)90007-4
  14. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-502 (1972)
  15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  16. Lu J, Zheng YL, Wu DM, Luo L, Sun DX, Shan Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem. Pharmacol. 74: 1078-1090 (2007) https://doi.org/10.1016/j.bcp.2007.07.007
  17. Tadera K, Minami Y, Takamatsu K, Matsuoka T. Inhibition of ${\alpha}$-glucosidase and ${\alpha}$-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 52: 149-153 (2006) https://doi.org/10.3177/jnsv.52.149
  18. Subramanian R, Asmawi MZ, Sadikun A. In vitro alpha-glucosidase and alpha-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim. Pol. 55: 391-398 (2008)
  19. Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-Keller AJ. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J. Neuroimmunol. 219: 25-32 (2010) https://doi.org/10.1016/j.jneuroim.2009.11.010
  20. Greenwood CE, Winocur G. High-fat diets, insulin resistance and declining cognitive function. Neurobiol. Aging 26: 42-45 (2005) https://doi.org/10.1016/j.neurobiolaging.2005.08.017
  21. Liu Y, Fu X, Lan N, Li S, Zhang J, Wang S, Li C, Shang Y, Huang T, Zhang L. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav. Brain Res. 267: 178-188 (2014) https://doi.org/10.1016/j.bbr.2014.02.040
  22. Foot M, Cruz TF, Clandinin MT. Effect of dietary lipid on synaptosomal acetylcholinesterase activity. Biochem. J. 211: 507-509 (1983) https://doi.org/10.1042/bj2110507
  23. Bjrkhem I, Heverin M, Leoni V, Meaney S, Diczfalusy U. Oxysterols and Alzheimer's disease. Acta Neurol. Scand. 114: 43-49 (2006) https://doi.org/10.1111/j.1600-0404.2006.00684.x
  24. Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessede G, Pais de Barros JP, Laubriet A, Gambert P, Lizard G, Nel D. Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ. 11: 897-905 (2004) https://doi.org/10.1038/sj.cdd.4401434
  25. Kim JM, Park SK, Guo TJ, Kang JY, Ha JS, Lee U, Heo HJ. Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice. Behav. Brain Res. 312: 39-54 (2016) https://doi.org/10.1016/j.bbr.2016.06.013
  26. Heo HJ, Kim DO, Choi SJ, Shin DH, Lee CY. Potent inhibitory effect of flavonoids in Scutellaria baicalensis on amyloid ${\beta}$ protein-induced neurotoxicity. J. Agr. Food Chem. 52: 4128-4132 (2004) https://doi.org/10.1021/jf049953x
  27. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410 (2002) https://doi.org/10.1016/S1360-1385(02)02312-9
  28. Soreq H, Seidman S. Acetylcholinesterase-new roles for an old actor. Nat. Rev. Neurosci. 2: 294-302 (2001) https://doi.org/10.1038/35067589
  29. Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychop. 9: 101-124 (2006)
  30. Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer's disease. J. Neural Transm. 113: 1625-1644 (2006) https://doi.org/10.1007/s00702-006-0579-2
  31. Wojakowska A, Piasecka A, Garcia-Lopez PM, Zamora-Natera F, Krajewski P, Marczak L, Kachlicki P, Stobiecki M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC-MS techniques. Phytochemistry 92: 71-86 (2013) https://doi.org/10.1016/j.phytochem.2013.04.006
  32. Jaiswal R, Sovdat T, Vivan F, Kuhnert N. Profiling and characterization by LC-$MS^n $ of the chlorogenic acids and hydroxycinnamoylshikimate esters in mate (Ilex paraguariensis). J. Agr. Food Chem. 58: 5471-5484 (2010) https://doi.org/10.1021/jf904537z
  33. Goupy P, Vian MA, Chemat F, Caris-Veyrat C. Identification and quantification of flavonols, anthocyanins and lutein diesters in tepals of Crocus sativus by ultra-performance liquid chromatography coupled to diode array and ion trap mass spectrometry detections. Ind. Crop. Prod. 44: 496-510 (2013) https://doi.org/10.1016/j.indcrop.2012.10.004
  34. Kolodziejczyk K, Sojka M, Abadias M, Vinas I, Guyot S, Baron A. Polyphenol composition, antioxidant capacity, and antimicrobial activity of the extracts obtained from industrial sour cherry pomace. Ind. Crops Prod. 51: 279-288 (2013) https://doi.org/10.1016/j.indcrop.2013.09.030
  35. Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur. J. Pharmacol. 670: 325-332 (2011) https://doi.org/10.1016/j.ejphar.2011.08.011
  36. Eid HM, Martineau LC, Saleem A, Muhammad A, Vallerand D, Benhaddou-Andaloussi A, Nistor L, Afshar A, Arnason TJ, Haddad PS. Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol. Nutr. Food Res. 54: 991-1003 (2010) https://doi.org/10.1002/mnfr.200900218
  37. Sambanthamurthi R, Tan Y, Sundram K, Abeywardena M, Sambandan TG, Rha C, Wahid MB. Oil palm vegetation liquor: A new source of phenolic bioactives. Brit. J. Nutr. 106: 1655-1663 (2011) https://doi.org/10.1017/S0007114511002121
  38. Alonso-Amelot ME, Avendao M. Human carcinogenesis and bracken fern: A review of the evidence. Curr. Med. Chem. 9: 675-686 (2002) https://doi.org/10.2174/0929867023370743
  39. Park CH, Kim KH, Yook HS. Comparison of antioxidant and antimicrobial activities of bracken (Pteridium aquilinum Kuhn.) according to cooking methods. Korean J. Food Nutr. 27: 348-357 (2014) https://doi.org/10.9799/ksfan.2014.27.3.348