Antihepatotoxic effect of ethanol extracts from steam-dried ginseng berry on ᴅ-galactosamine/lipopolysaccharide-sensitized mice

ᴅ-galactosamine/lipopolysaccharide로 감작된 급성간독성 마우스 모델에서 인삼열매추출물의 간독성 개선 효과

  • Jang, Su Kil (College of Life Science, Gangneung-Wonju National University) ;
  • Park, Jun Sub (College of Life Science, Gangneung-Wonju National University) ;
  • Ahn, Jeong Won (College of Life Science, Gangneung-Wonju National University) ;
  • Jo, Boram (College of Life Science, Gangneung-Wonju National University) ;
  • Kim, Hyun Soo (College of Life Science, Gangneung-Wonju National University) ;
  • Kim, JeongHoon (College of Life Science, Gangneung-Wonju National University) ;
  • Kim, Sang Yun (College of Life Science, Gangneung-Wonju National University) ;
  • Park, Jung Youl (Department of Applied Chemistry, Daejeon University) ;
  • Lee, Do Ik (College of Pharmacy, Chung-Ang University) ;
  • Park, Hee Yong (College of Pharmacy, Chung-Ang University) ;
  • Joo, Seong Soo (College of Life Science, Gangneung-Wonju National University)
  • 장수길 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 박준섭 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 안정원 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 조보람 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 김현수 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 김정훈 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 김상윤 (강릉원주대학교 생명과학대학 생물의약신소재연구실) ;
  • 박정열 (대전대학교 응용화학과) ;
  • 이도익 (중앙대학교 약학대학 면역질환연구실) ;
  • 박희용 (중앙대학교 약학대학 면역질환연구실) ;
  • 주성수 (강릉원주대학교 생명과학대학 생물의약신소재연구실)
  • Received : 2017.07.17
  • Accepted : 2017.08.14
  • Published : 2017.12.31


The present study aimed to examine the hepatoprotective effects of ethanol extracts from steam-dried ginseng berry (SGBE) in both $\text\tiny{D}$-Galactosamine/Lipopolysaccharide ($\text\tiny{D}$-GalN/LPS)-sensitized mice and in vitro models. Our results clearly demonstrated that SGBE significantly reduced the level of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase in blood, and $TNF{\alpha}$ was normalized in 8 h after the treatment with $\text\tiny{D}$-GalN/LPS. Coincidently, major organs remained unimpaired when compared to $\text\tiny{D}$-GalN/LPS control group. Moreover, p38, which stimulates expression of NAFLD-associated cytokines, was markedly inhibited when treated with SGBE. In vitro analysis revealed that the main components of SGBE, linoleic acid and ginsenoside Re/Rd, may play a role in protecting liver from $\text\tiny{D}$-GalN/LPS-induced toxicity. Finally, we concluded that SGBE may be a promising therapeutic agent for preventing damage to the liver.


Supported by : 산업통상자원부


  1. Bellentani S, Scaglioni F, Marino M, Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig. Dis. 28: 155-161 (2010)
  2. Younossi ZM, Stepanova M, Afendy M, Fang Y, Younossi Y, Mir H, Srishord M. Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin. Gastroenterol. Hepatol. 9: 524-530 (2011)
  3. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome. Dig. Liver Dis. 47: 181-190 (2015)
  4. Park SH, Jeon WK, Kim SH, Kim HJ, Park DI, Cho YK, Sung IK, Sohn CI, Keum DK, Kim BI. Prevalence and risk factors of non-alcoholic fatty liver disease among Korean adults. J. Gastroenterol. Hepatol. 21: 138-143 (2006)
  5. Lee JY, Kim KM, Lee SG, Yu E, Lim YS, Lee HC, Chung YH, Lee YS, Suh DJ. Prevalence and risk factors of non-alcoholic fatty liver disease in potential living liver donors in Korea: A review of 589 consecutive liver biopsies in a single center. J. Hepatol. 47: 239-244 (2007)
  6. Kim NH, Park J, Kim SH, Kim DH, Cho GY, Baik I, Lim HE, Kim EJ, Na JO, Lee JB, Lee SK, Shin C. Non-alcoholic fatty liver disease, metabolic syndrome and subclinical cardiovascular changes in the general population. Heart. 100: 938-943 (2014)
  7. Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW. Non-alcoholic fatty liver disease and diabetes. Metabolism 65: 1096-1108 (2016)
  8. Nguyen GC, Sam J, Thuluvath PJ. Hepatitis C is a predictor of acute liver injury among hospitalizations for acetaminophen overdose in the United States: A nationwide analysis. Hepatology 48: 1336-1341 (2008)
  9. Myers RP, Shaheen AA. Hepatitis C, alcohol abuse, and unintentional overdoses are risk factors for acetaminophen-related hepatotoxicity. Hepatology 49: 1399-1400 (2009)
  10. Huang MA, Greenson JK, Chao C, Anderson L, Peterman D, Jacobson J, Emick D, Lok AS, Conjeevaram HS. One-year intense nutritional counseling results in histological improvement in patients with non-alcoholic steatohepatitis: A pilot study. Am. J. Gastroenterol. 100: 1072-1081 (2005)
  11. Benjaminov O, Beglaibter N, Gindy L, Spivak H, Singer P, Wienberg M, Stark A, Rubin M. The effect of a low-carbohydrate diet on the nonalcoholic fatty liver in morbidly obese patients before bariatric surgery. Surg. Endosc. 21: 1423-1427 (2007)
  12. Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am. J. Gastroenterol. 98: 2485-2490 (2003)
  13. Attele AS, Zhou YP, Xie JT, Wu J A, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51: 1851-1858 (2002)
  14. Xie JT, Zhou YP, Dey L, Attele AS, Wu JA, Gu M, Polonsky KS, Yuan CS. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 9: 254-258 (2002)
  15. Hong SH, Suk KT, Choi SH, Lee JW, Sung HT, Kim CH, Kim EJ, Kim MJ, Han SH, Kim MY, Baik SK, Kim DJ, Lee GJ, Lee SK, Park SH, Ryu OH. Anti-oxidant and natural killer cell activity of Korean Red Ginseng (Panax ginseng) and urushiol (Rhus vernicifera Stokes) on nonalcoholic fatty liver disease of rat. Food Chem. Toxicol. 55: 586-591 (2013)
  16. Kim ST, Kim HB, Lee KH, Choi YR, Kim HJ, Shin IS, Gyoung YS, Joo SS. Steam-dried ginseng berry fermented with Lactobacillus plantarum controls the increase of blood glucose and body weight in type 2 obese diabetic db/db mice. J. Agr. Food Chem. 60: 5438-5445 (2012)
  17. Lee DI, Kim ST, Lee DH, Yu JM, Jang SK, Joo SS. Ginsenoside-free molecules from steam-dried ginseng berry promote ethanol metabolism: an alternative choice for an alcohol hangover. J. Food Sci. 79: C1323-1330 (2014)
  18. Galanos C, Freudenberg MA, Reutter W. Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc. Natl. Acad. Sci. USA 76: 5939-5943 (1979)
  19. Jang SK, Kim ST, Lee DI, Park JS, Jo BR, Park JY, Heo J, Joo SS. Decoction and Fermentation of Selected Medicinal Herbs Promote Hair Regrowth by Inducing Hair Follicle Growth in Conjunction with Wnts Signaling. Evid. Based Compl. Alternat. Med. 2016: 4541580 (2016)
  20. Kocha T, Yamaguchi M, Ohtaki H, Fukuda T, Aoyagi T. Hydrogen peroxide-mediated degradation of protein: Different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin. Biochem. Biophys. Acta. 1337: 319-326 (1997)
  21. Mayo JC, Tan DX, Sainz RM, Natarajan M, Lopez-Burillo S, Reiter RJ. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: Comparative effects of melatonin and other antioxidants. Biochem. Biophys. Acta. 1620: 139-150 (2003)
  22. Quan HY, Yuan HD, Jung MS, Ko SK, Park YG, Chung SH. Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int. J. Mol. Med. 29: 73-80 (2012)
  23. Song SB, Tung NH, Quang TH, Ngan NTT, Kim KE, Kim YH. Inhibition of TNF-${\alpha}$-mediated NF-${\kappa}B$ transcriptional activity in HepG2 cells by dammarane-type saponins from Panax ginseng leaves. J. Ginseng Res. 36: 146-152 (2012)
  24. Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML, Clore JN. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120: 1183-1192 (2001)
  25. Videla LA, Rodrigo R, Orelland M. Oxidation stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. 106: 261-268 (2004)
  26. Nozaki Y, Fujita K, Wada K, Yoneda M, Kessoku T, Shinohara Y, Imajo K, Ogawa Y, Nakamuta M, Saito S, Masaki N, Nagashima Y, Terauchi Y, Nakajima A. Deficiency of iNOS-derived NO accelerates lipid accumulation-independent liver fibrosis in nonalcoholic steatohepatitis mouse model. BMC Gastroenterol. 15: 1-14 (2015)
  27. Seth RK, Das S, Dattaroy D, Chandrashekaran V, Alhasson F, Michelotti G, Nagarkatti M, Nagarkatti P, Diehl AM, Darwin Bell P, Liedtke W, Chatterjee S. TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity. Free Radic. Biol. Med. 102: 260-273 (2017)
  28. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323-350 (1997)
  29. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54: 469-487 (2003)
  30. Aldridge C, Razzak A, Babcock TA, Helton WS, Espat NJ. Lipopolysaccharide-stimulated RAW 264.7 macrophage inducible nitric oxide synthase and nitric oxide production Is decreased by an omega-3 fatty acid lipid emulsion. J. Surg. Res. 149: 296-302 (2008)
  31. Fujita K, Nozaki Y, Yoneda M, Wada K, Takahashi H, Kirikoshi H, Inamori M, Saito S, Iwasaki T, Terauchi Y, Maeyama S, Nakajima A. Nitric oxide plays a crucial role in the development/progression of nonalcoholic steatohepatitis in the choline-deficient, l-amino acid-defined diet-fed rat model. Alcohol Clin. Exp. Res. 34: S18-24 (2010)
  32. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Dispos. 32: 1201-1208 (2004)
  33. Tanaka E, Terada M, Misawa S. Cytochrome P450 2E1: Its clinical and toxicological role. J. Clin. Pharm. Ther. 25: 165-175 (2000)
  34. Lu Y and Cederbaum AI. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44: 723-738 (2008)
  35. Gomez-Lechon MJ, Jover R, Donato MT. Cytochrome P450 and steatosis. Curr. Drug Metab. 10: 692-699 (2009)
  36. Emery MG, Fisher JM, Chien JY, Kharasch ED, Dellinger EP, Kowdley KV, Thummel KE. CYP2E1 activity before and after weight loss in morbidly obese subjects with nonalcoholic fatty liver disease. Hepatology 38: 428-435 (2003)
  37. Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Takayanagi R, Nakamuta M. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. Int. J. Mol. Med. 20: 351-358 (2007)
  38. Gressner AM, Bachem MG. Molecular mechanisms of liver fibrogenesis-a homage to the role of activated fat-storing cells. Digestion. 56: 335-346 (1995)
  39. Joka D, Wahl K, Moeller S, Schlue J, Vaske B, Bahr MJ, Manns MP, Schulze-Osthoff K, Bantel H. Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis. Hepatology 55: 455-464 (2012)
  40. Sudo K, Yamada Y, Moriwaki H, Saito K, Seishima M. Lack of tumor necrosis factor receptor type 1 inhibits liver fibrosis induced by carbon tetrachloride in mice. Cytokine 29: 236-244 (2005)
  41. Das SK and Balakrishnan V. Role of Cytokines in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Ind. J. Clin. Biochem. 26: 202-209 (2011)
  42. Joo KM, Lee JH, Jeon HY, Park CW, Hong DK, Jeong HJ, Lee SJ, Lee SY, Lim KM. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J. Pharm. Biomed. Anal. 51: 278-283 (2010)
  43. Dufour DR, Lott JA, Nolte FS, Gretch DR, Koff RS, Seeff LB. Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clin. Chem. 46: 2027-2049 (2000)
  44. Neuschwander-Tetri BA, Clark JM, Bass NM, Van Natta ML, Unalp-Arida A, Tonascia J, Zein CO, Brunt EM, Kleiner DE, McCullough AJ, Sanyal AJ, Diehl AM, Lavine JE, Chalasani N, Kowdley KV. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 52: 913-924 (2010)
  45. Sheriff SA, Devaki T. Effect of lycopene on general clinical parameters during D-galactosamine/lipopolysaccharide (D-GalN/LPS) induced hepatitis in rats. Res. J. Pharm. Technol. 5: 398-403 (2012)
  46. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, Garcia-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 4: 185-198 (2006)
  47. Paredes-Turrubiarte G, Gonzalez-Chavez A, Perez-Tamayo R, Salazar-Vazquez BY, Hernandez VS, Garibay-Nieto N, Fragoso JM, Escobedo G. Severity of non-alcoholic fatty liver disease is associated with high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients. Clin. Exp. Med. 16: 193-202 (2016)
  48. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22: 153-183 (2001)
  49. Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281: 12093-12101 (2006)
  50. Sinha-Hikim I, Sinha-Hikim AP, Shen R, Kim HJ, French SW, Vaziri ND, Crum AC, Rajavashisth TB, Norris KC. A novel cystine based antioxidant attenuates oxidative stress and hepatic steatosis in diet-induced obese mice. Exp. Mol. Pathol. 91: 419-428 (2011)