Principle of Anodic TiO2 Nanotube Formations

양극산화를 이용한 산화 타이타늄 나노 튜브 구조 형성 원리

  • Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
  • 이기영 (경북대학교 나노소재공학부)
  • Received : 2017.01.24
  • Accepted : 2017.02.20
  • Published : 2017.12.10


One-dimensional nanostructured metal oxide can be formed through an anodic oxidation, which is a typical technique of metal surface treatment. Studies on $TiO_2$ nanotubes have been widely carried out with increasing interests in $TiO_2$, which has an excellent functionality among various metal oxides. The present article reviews the principles of formation of $TiO_2$ nanotubes, which have been studied so far. In particular, the article discussed the equilibrium relationship between the oxide formation and etching, which is a key parameter of $TiO_2$ nanotube growth, and the formation of the porous structure. Furthermore, morphological considerations of $TiO_2$ nanotubes according to electrolyte conditions will be explained to the researchers who will study the application of $TiO_2$ nanotubes formed through the anodic oxidation in the future.


Supported by : 경북대학교


  1. S. Kim, J. Lim, and J. Choi, Preparation of polymer nonotubes/ nanowires by using inorganic porous templates, Polym. Sci. Technol., 17, 742 (2006).
  2. H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumi-na, Science, 268, 1466 (1995).
  3. H. Masuda, F. Hasegawa, and S. Ono, Self ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc., 144, L127 (1997).
  4. O. Jessensky, F. Müller, and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., 72, 1173 (1998).
  5. A.-P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 84, 6023 (1998).
  6. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37 (1972).
  7. A. Fujishima, X. Zhang, and D. A. Tryk, $TiO_2$ photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515 (2008).
  8. B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films, Nature, 353, 737 (1991).
  9. P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, $TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2, 45 (2010).
  10. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27, 629 (1999).<629::AID-SIA551>3.0.CO;2-0
  11. M. Assefpour-Dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces, J. Mater. Sci., 19, 3626 (1984).
  12. R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Self-organized porous titanium oxide prepared in $H_{2}SO_{4}/HF$ electrolytes, Solid-State Lett., 6, B12 (2003).
  13. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16, 3331 (2001).
  14. P. Roy, S. Berger, and P. Schmuki, $TiO_2$ nanotubes: Synthesis and applications, Angew. Chem. Int. Ed., 50, 2904 (2011).
  15. D. Kowalski, D. Kim, and P. Schmuki, $TiO_2$ nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235 (2013).
  16. K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: Nanotubes, Chem. Rev., 114, 9385 (2014).
  17. A. Guntherschulze and H. Betz, Die bewegung der ionengitter von isolatoren bei extremen elektrischen Feldstarken, Z. Phys., 92, 367 (1934).
  18. K. R. Hebert, S. Albu, I. Paramasivam, and P. Schmuki, Morphological instability leading to formation of porous anodic oxide films, Nat. Mater., 11, 162 (2012).
  19. K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak, D. Kim, and P. Schmuki, Effect of electrolyte conductivity on the formation of a $TiO_2$ for a dye-sensitized solar cell, J. Korean Phys. Soc., 54, 1027 (2009).
  20. J. F. Vanhumbeeck and J. Proost, Electrochemical processing of ultrathin metallic oxides featuring in-situ monitoring of growth stress transitions, 209th ECS Meeting, May 7-12, Denver, USA (2006).
  21. J. F. Vanhumbeeck and J. Proost, On the contribution of electrostriction to charge-induced stresses in anodic oxide films, Electrochim. Acta, 53, 6165 (2008).
  22. S. Ono, M. Saito, and H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta, 51, 827 (2005).
  23. S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, A flow model of porous anodic film growth on aluminium, Electrochimica Acta, 52, 681 (2006).
  24. S. P. Albu, P. Roy, S. Virtanen, and P. Schmuki, Self-organized $TiO_2$ nanotube arrays: Critical effects on morphology and growth, Isr. J. Chem., 50, 453 (2010).
  25. H. Habazaki, K. Fushimi, K. Shimizu, P. Skeldon, and G. E. Thompson, Fast migration of fluoride ions in growing anodic titanium oxide, Electrochem. Commun., 9, 1222 (2007).
  26. S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of $TiO_2$ nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57 (2011).
  27. W. Wei, S. Berger, C. Hauser, K. Meyer, M. Yang, and P. Schmuki, Transition of $TiO_2$ nanotubes to nanopores for electrolytes with very low water contents, Electrochem. Commun., 12, 1184 (2010).
  28. J. Macak, H. Tsuchiya, and P. Schmuki, High-aspect-ratio $TiO_2$ nanotubes by anodization of titanium, Angew. Chem. Int. Ed., 44, 2100 (2005)
  29. J. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Smooth anodic $TiO_2$ nanotubes, Angew. Chem. Int. Ed., 44, 7463 (2005).
  30. H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Fabrication and characterization of smooth high aspect ratio zirconia nanotubes, Chem. Phys. Lett., 410, 188 (2005).
  31. H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Formation of self-organized zirconia nanostructure, ECS Trans., 1, 351 (2006).
  32. S. Berger, F. Jakubka, and P. Schmuki, Formation of hexagonally ordered nanoporous anodic zirconia, Electrochem. Commun., 10, 1916 (2008).
  33. H. Tsuchiya and P. Schmuki, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun., 7, 49 (2005).
  34. I. Sieber, B. Kannan, and P. Schmuki, Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes, Electrochem. Solid-State Lett., 8, J10 (2005).
  35. I. Sieber and P. Schmuki, Porous tantalum oxide prepared by electrochemical anodic oxidation, J. Electrochem. Soc., 152, C639 (2005).
  36. H. A. El-Sayed and V. I. Birss, Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes, Nano Lett., 9, 1350 (2009).
  37. S. P. Albu, A. Ghicov, and P. Schmuki, High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes, Phys. Status Solidi Rapid Res. Lett., 3, 64 (2009).
  38. T. D. Burleigh, P. Schmuki, and S. Virtanen, Properties of the nanoporous anodic oxide electrochemically grown on steel in hot 50% NaOH, J. Electrochem. Soc., 156, C45 (2009).
  39. S. K. Mohapatra, S. E. John, S. Banerjee, and M. Misra, Water photooxidation by smooth and ultrathin ${\alpha}$-$Fe_2O_3$ nanotube, Arrays Chem. Mater., 21, 3048 (2009).
  40. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Formation of self-organized niobium porous oxide on niobium, Electrochem. Commun., 7, 97 (2005).
  41. W. Wei, K. Lee, S. Shaw, and P. Schmuki, Anodic formation of high aspect ratio, self-ordered $Nb_2O_5$ nanotubes, Chem. Commun., 48, 4244 (2012).
  42. C.-Y. Lee, K. Lee, and P. Schmuki, Anodic formation of self-organized cobalt oxide nanoporous layers, Angew. Chem. Int. Ed., 52, 2077 (2013).
  43. Y. Yang, S. P. Albu, D. Kim, and P. Schmuki, Enabling the anodic growth of highly ordered $V_2O_5$ nanoporous/nanotubular structures, Angew. Chem. Int. Ed., 50, 9071 (2011).
  44. R. Hahn, J. M. Macak, and P. Schmuki, Rapid anodic growth of $TiO_2$ and $WO_3$ nanotubes in fluoride free electrolytes, Electorchem. Commun., 9, 947 (2007).
  45. W. Wei, R. Kirchgeorg, K. Lee, S. So, and P. Schmuki, Nitrates: A new class of electrolytes for the rapid anodic growth of self-ordered oxide layers on Ti and Ta, Phys. Status Solidi Rapid Res. Lett., 5, 394 (2011).
  46. D. Kim, K. Lee, P. Roy, B.I. Birajdar, E. Spiecker, and S. Schmuki, Formation of a non-thickness-limited titanium dioxide and its use in dye-sensitized solar cells, Angew. Chem. Int. Ed., 48, 9326 (2009).
  47. K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, and P. Schmuki, Anodic formation of thick anatase $TiO_2$ mesosponge layers for high-efficiency Photocatalysis, J. Am. Chem. Soc., 132, 1478 (2010).
  48. K. Lee, D. Kim, and P. Schmuki, Highly self-ordered $TiO_2$ structures by in a hot glycerol electrolyte, Chem. Commun., 47, 5789 (2011).
  49. K. Lee, Understanding the formation of anodic nanoporous $TiO_2$ structures in a hot glycerol/phosphate electrolyte, J. Electrochem. Soc., 164, E5 (2017).