DOI QR코드

DOI QR Code

Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas

배출가스의 질소산화물과 이산화황 동시 저감 기술

  • Park, Hyun-Woo (Plant Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Uhm, Sunghyun (Plant Engineering Center, Institute for Advanced Engineering (IAE))
  • 박현우 (고등기술연구원 플랜트엔지니어링센터 에너지환경연구팀) ;
  • 엄성현 (고등기술연구원 플랜트엔지니어링센터 에너지환경연구팀)
  • Received : 2017.09.11
  • Accepted : 2017.09.26
  • Published : 2017.12.10

Abstract

Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides ($NO_x$) and sulfur dioxide ($SO_2$) are known to be causative substances to form fine particles ($PM_{2.5}$), which are also deleterious to human health. The integrated system composed of selective catalytic reduction (SCR) and wet flue gas desulfurization (WFGD) have been widely applied in order to control $NO_x$ and $SO_2$ emissions, resulting in high investment and operational costs, maintenance problems, and technical limitations. Recently, new technologies for the simultaneous removal of $NO_x$ and $SO_2$ from the flue gas, such as absorption, advanced oxidation processes (AOPs), non-thermal plasma (NTP), and electron beam (EB), are investigated in order to replace current integrated systems. The proposed technologies are based on the oxidation of $NO_x$ and $SO_2$ to $HNO_3$ and $H_2SO_4$ by using strong aqueous oxidants or oxidative radicals, the absorption of $HNO_3$ and $H_2SO_4$ into water at the gas-liquid interface, and the neutralization with additive reagents. In this paper, we summarize the technical improvements of each simultaneous abatement processes and the future prospect of technologies for demonstrating large-scaled applications.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. The World Bank Group, Data for fossil fuel energy consumption, www.worldbank.org (2014).
  2. J. Ye, J. Shang, Q. Li, W. Xu, J. Liu, X. Feng, and T. Zhu, The use of vacuum ultraviolet irradiation to oxidize $SO_2$ and $NO_x$ for simultaneous desulfurization and denitrification, J. Hazard. Mater., 271, 89-97 (2014). https://doi.org/10.1016/j.jhazmat.2014.02.011
  3. W. Sun, S. Ding, S. Zeng, S. Su, and W. Jiang, Simultaneous absorption of $NO_x$ and $SO_2$ from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone, J. Hazard. Mater., 192, 124-130 (2011).
  4. H. W. Park, S. Choi, and D. W. Park, Simultaneous treatment of NO and $SO_2$ with aqueous $NaClO_2$ solution in a wet scrubber combined with a plasma electrostatic precipitator, J. Hazard. Mater., 285, 117-126 (2015). https://doi.org/10.1016/j.jhazmat.2014.11.040
  5. J. Zhang, R. Zhang, X. Chen, M. Tong, W. Kang, S. Guo, Y. Zhou, and J. Lu, Simultaneous removal of NO and $SO_2$ from flue gas by ozone oxidation and NaOH absorption, Ind. Eng. Chem. Res., 53, 6450-6456 (2014). https://doi.org/10.1021/ie403423p
  6. K. Skalaska, J. S. Miller, and S. Ledakowicz, Trends in $NO_x$ abatement: Review, Sci. Total Environ., 408, 3976-3989 (2010). https://doi.org/10.1016/j.scitotenv.2010.06.001
  7. P. Fang, C. Cen, X. Wang, Z. Tang, Z. Tang, and D. Chen, Simultaneous removal of $SO_2$, NO and $Hg^0$ by wet scrubbing using urea + $KMnO_4$ solution, Fuel Process. Technol., 106, 645-653 (2013). https://doi.org/10.1016/j.fuproc.2012.09.060
  8. F. Xu, Z. Luo, W. Cao, P. Wang, B. Wei, X. Gao, M. Fang, and K. Cen, Simultaneous oxidation of NO, $SO_2$ and $Hg^0$ from flue gas by pulsed corona discharge, J. Environ. Sci., 21, 328-332 (2009). https://doi.org/10.1016/S1001-0742(08)62272-X
  9. Z. Wang, J. Zhou, Y. Zhu, Z. Wen, J. Liu, and K. Cen, Simultaneous removal of $NO_x$, $SO_2$ and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results, Fuel Process. Technol., 88, 817-823 (2007). https://doi.org/10.1016/j.fuproc.2007.04.001
  10. A. A. Patsias, W. Nimmo, B. M. Gibbs, and P. T. Williams, Calcium-based sorbents for simultaneous $NO_x$/$SO_x$ reduction in a down-fired furnace, Fuel, 84, 1864-1873 (2005). https://doi.org/10.1016/j.fuel.2005.03.009
  11. L. Guo, Y. Shu, and J. Gao, Present and future development of the flue gas control technology of the $DeNO_x$ in the world, Energy Procedia, 17, 397-403 (2012). https://doi.org/10.1016/j.egypro.2012.02.112
  12. L. Wang, W. Zhao, and Z. Wu, Simultaneous absorption of NO and $SO_2$ by $Fe^{II}EDTA$ combined with $Na_2SO_3$ solution, Chem. Eng. J., 132, 227-232 (2007). https://doi.org/10.1016/j.cej.2006.12.030
  13. Y. Zhao, P. Xu, D. Fu, J. Huang, and H. Yu, Experimental study on simultaneous desulfurization and denitrification based on highly active absorbent, J. Environ. Sci. (China), 18, 281-286 (2006).
  14. Q. Zhang, Removal Technology of $SO_2$ and $NO_x$ in Flue Gas and Engineering Instances, Chemical Industry Press, Beijing, China (2002).
  15. M. M. Barbooti, N. K. Ibraheem, and A. H. Ankosh, Removal of nitrogen dioxide and sulfur dioxide from air streams by absorption in urea solution, J. Environ. Prot., 2, 175-185 (2011). https://doi.org/10.4236/jep.2011.22020
  16. P. Fang, C. Cen, Z. Tang, P. Zhong, D. Chen, and Z. Chen, Simultaneous removal of $SO_2$ and $NO_x$ by wet scrubbing using urea solution, Chem. Eng. J., 168, 52-59 (2011). https://doi.org/10.1016/j.cej.2010.12.030
  17. A. Pourmohammadbagher, E. Jamshidi, H. A. Ebrahim, B. Dabir, and M. M. Zeinabad, Simultaneous removal of gaseous pollutants with a novel swirl wet scrubber, Chem. Eng. Process., 50, 773-779 (2011). https://doi.org/10.1016/j.cep.2011.06.001
  18. T. W. Chien and H. Chu, Removal of $SO_2$ and NO from flue gas by wet scrubbing using an aqueous $NaClO_2$ solution, J. Hazard. Mater., B80, 43-57 (2000).
  19. H. K. Lee, B. R. Dechwal, and K. S. Yoo, Simultaneous removal of $SO_2$ and NO by sodium chlorite solution in wetted-wall column, Korean J. Chem. Eng., 22, 208-213 (2005). https://doi.org/10.1007/BF02701486
  20. A. Pourmohammadbagher, E. Jamshidi, H. A. Ebrahim, and S. Dabir, Study on simultaneous removal of $NO_x$ and $SO_2$ with $NaClO_2$ in a novel swirl wet system, Ind. Eng. Chem. Res., 50, 8278-8284 (2011). https://doi.org/10.1021/ie102272x
  21. M. K. Mondal and V. R. Chelluboyana, New experimental results of combined $SO_2$ and NO removal from simulated gas stream by NaClO as low-cost absorbent, Chem. Eng. J., 217, 48-53 (2013). https://doi.org/10.1016/j.cej.2012.12.002
  22. D. S. Jin, B. R. Deshwal, Y. S. Park, and H. K. Lee, Simultaneous removal of $SO_2$ and NO by wet scrubbing using aqueous chlorine dioxide solution, J. Hazard. Mater., B135, 412-417 (2006).
  23. D. Xia, C. He, L. Zhu, Y. Huang, H. Dong, M. Su, M. A. Asi, and D. Bian, A novel wet-scrubbing process using Fe(VI) for simultaneous removal of $SO_2$ and NO, J. Environ. Monit., 13, 864-870 (2011). https://doi.org/10.1039/c0em00647e
  24. Y. Zhao, Y. Han, T. Guo, and T. Ma, Simultaneous removal of $SO_2$, NO and $Hg^0$ from flue gas by ferrate (VI) solution, Energy, 67, 652-658 (2014). https://doi.org/10.1016/j.energy.2014.01.081
  25. Y. G. Adewuyi and N. Y. Sakyi, Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature, Ind. Eng. Chem. Res., 52, 11702-11711 (2013). https://doi.org/10.1021/ie401649s
  26. C. V. Raghunath, P. Pandey, R. Saini, and M. K. Mondal, Absorption of $SO_2$ and NO through an integrative process with a cost-effective aqueous oxidant, Perspect. Sci., 8, 699-701 (2016). https://doi.org/10.1016/j.pisc.2016.06.063
  27. Y. Zhao, R. Hao, T. Wang, and C. Yang, Follow-up research for integrative process of pre-oxidation and post-absorption cleaning flue gas: Absorption of $NO_2$, NO and $SO_2$, Chem. Eng. J., 273, 55-65 (2015). https://doi.org/10.1016/j.cej.2015.03.053
  28. I. Liemans and D. Thomas, Simultaneous $NO_x$ and $SO_x$ reduction from oxyfuel exhaust gases using acidic solutions contining hydrogen peroxide, Energy Procedia, 37, 1348-1356 (2013). https://doi.org/10.1016/j.egypro.2013.06.010
  29. N. D. Hutson, R. Kryzyzynska, and R. K. Srivastava, Simultaneous removal of $SO_2$, $NO_x$, and Hg from coal flue gas using a $NaClO_2$-enhanced wet scrubber, Ind. Eng. Chem. Res., 47, 5825-5831 (2008). https://doi.org/10.1021/ie800339p
  30. R. Hao, Y. Zhang, Z. Wang, Y. Li, B. Yuan, X. Mao, and Y. Zhao, An advanced wet method for simultaneous removal of $SO_2$ and NO from coal-fired flue gas by utilizing a complex absorbent, Chem. Eng. J., 307, 562-571 (2017). https://doi.org/10.1016/j.cej.2016.08.103
  31. Y. Zhao, R. Hao, and M. Qi, Integrative process of peroxidation and absorption for simultaneous removal of $SO_2$, NO and $Hg^0$, Chem. Eng. J., 269, 159-167 (2015). https://doi.org/10.1016/j.cej.2015.01.064
  32. Y. Zhao, T. Guo, Z. Chen, and Y. Du, Simultaneous removal of $SO_2$ and NO using $M/NaClO_2$ complex absorbent, Chem. Eng. J., 160, 42-47 (2010). https://doi.org/10.1016/j.cej.2010.02.060
  33. Y. Zhao, R. Hao, B. Yuan, and J. Jiang, Simultaneous removal of $SO_2$, NO and $Hg^0$ through an integrative process utilizing a cost-effective complex oxidant, J. Hazard. Mater., 301, 74-83 (2016). https://doi.org/10.1016/j.jhazmat.2015.08.049
  34. C. V. Raghunath and M. K. Mondal, Experimental scale multi component absorption of $SO_2$ and NO by $NH_3$/NaClO scrubbing, Chem. Eng. J., 314, 537-547 (2017). https://doi.org/10.1016/j.cej.2016.12.011
  35. Y. Zhao, X. Wen, T. Guo, and J. Zhou, Desulfurization and denitrogenation from flue gas using Fenton reagent, Fuel Process. Technol., 128, 54-60 (2014). https://doi.org/10.1016/j.fuproc.2014.07.006
  36. S. Wang, Q. Zhang, G. Zhang, Z. Wang, and P. Zhu, Effects of sintering flue gas properties on simultaneous removal of $SO_2$ and NO by ammonia-Fe(II)EDTA absorption, J. Energy Inst., 90, 522-527 (2017) https://doi.org/10.1016/j.joei.2016.05.010
  37. Y. Zhao, R. Hao, F. Xue, and Y. Feng, Simultaneous removal of multi-pollutants from flue gas by a vaporized composite absorbent, J. Hazard. Mater., 321, 500-508 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.044
  38. Y. Zhao, R. Hao, Q. Guo, and Y. Feng, Simultaneous removal of $SO_2$ and NO by a vaporized enhanced-Fenton reagent, Fuel Process. Technol., 137, 8-15 (2015). https://doi.org/10.1016/j.fuproc.2015.04.003
  39. T. W. Chien, H. Chu, and H. T. Hsueh, Kinetic study on absorption of $SO_2$ and $NO_x$ with acidic $NaClO_2$ solutions using the spraying column, J. Environ. Eng., 129, 967-974 (2003). https://doi.org/10.1061/(ASCE)0733-9372(2003)129:11(967)
  40. Y. Liu, Q. Wang, Y. Yin, J. Pan, and J. Zhang, Advanced oxidation removal of NO and $SO_2$ from flue gas by using ultraviolet/ $H_2O_2$/NaOH process, Chem. Eng. Res. Des., 92, 1907-1914 (2014). https://doi.org/10.1016/j.cherd.2013.12.015
  41. R. Hao, Y. Zhao, B. Yuan, S. Zhou, and S. Yang, Establishment of a novel advanced oxidation process for economical and effective removal of $SO_2$ and NO, J. Hazard. Mater., 318, 224-232 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.052
  42. Y. Liu, J. Zhang, C. Sheng, Y. Zhang, and L. Zhao, Simultaneous removal of NO and $SO_2$ from coal-fired flue gas by UV/$H_2O_2$ advanced oxidation process, Chem. Eng. J., 162, 1006-1011 (2010). https://doi.org/10.1016/j.cej.2010.07.009
  43. Y. Sun, E. Zwolinska, and A. G. Chmielewski, Abatement technologies for high concentrations of $NO_x$ and $SO_2$ removal from exhaust gases: A review, Environ. Sci. Technol., 46, 119-142 (2016). https://doi.org/10.1080/10643389.2015.1063334
  44. B. M. Obradovic, G. B. Sretenovic, and M. M. Kuraica, A dual- use of DBD plasma for simultaneous $NO_x$ and $SO_2$ removal from coal-combustion flue gas, J. Hazard. Mater., 185, 1280-1286(2011). https://doi.org/10.1016/j.jhazmat.2010.10.043
  45. C. J. Yu, F. Xu, Z. Y. Luo, W. Cao, B. Wei, and X. Gao, M. X. Fang, and K. F. Cen, Influences of water vapor and fly ash addition on NO and $SO_2$ gas conversion efficiencies enhanced by pulsed corona discharge, J. Electrostat., 67, 829-834 (2009). https://doi.org/10.1016/j.elstat.2009.06.003
  46. T. Kuroki, M. Takahashi, M. Okubo, and T. Yamamoto, Singlestage plasma-chemical process for particulates, $NO_x$, and $SO_x$ simultaneous removal, IEEE Trans. Ind. Appl., 38, 1204-1209 (2002). https://doi.org/10.1109/TIA.2002.802919
  47. M. T. Radoiu, D. I. Martin, and I. Calinescu, Emission control of $SO_2$ and $NO_x$ by irradiation methods, J. Hazard. Mater., B97, 145-158 (2003).
  48. L. Huang and Y. Dang, Removal of $SO_2$ and $NO_x$ by pulsed corona combined with in situ $Ca(OH)_2$ absorption, Chin. J. Chem. Eng., 19, 518-522 (2011). https://doi.org/10.1016/S1004-9541(11)60015-3
  49. M. Wang, Y. Sun, and T. Zhu, Removal of $NO_x$, $SO_2$, and Hg from simulated flue gas by plasma-absorption hybrid system, IEEE Trans. Plasma Sci., 41, 312-318 (2013). https://doi.org/10.1109/TPS.2012.2234483
  50. A. Nasonova, H. C. Pham, D. J. Kim, and K. S. Kim, NO and $SO_2$ removal in non-thermal plasma reactor packed with glass beads-$TiO_2$ thin film coated by PCVD process, Chem. Eng. J., 156, 557-561 (2010). https://doi.org/10.1016/j.cej.2009.04.037
  51. H. C. Pham and K. S. Kim, Effect of $TiO_2$ thin film thickness on NO and $SO_2$ removals by dielectric barrier discharge-photocatalyst hybrid process, Ind. Eng. Chem. Res., 52, 5296-5301 (2013). https://doi.org/10.1021/ie302713p
  52. A. Nasonova and K. S. Kim, Effects of $TiO_2$ coating on zeolite particles for NO and $SO_2$ removal by dielectric barrier discharge process, Catal. Today, 211, 90-95 (2013). https://doi.org/10.1016/j.cattod.2013.03.006
  53. H. W. Park, I. J. Cho, S. Choi, and D. W. Park, Flexible dielectric barrier discharge reactor with water and Teflon dielectric layers, IEEE Trans. Plasma Sci., 42, 2364-2365 (2014). https://doi.org/10.1109/TPS.2014.2311816
  54. H. J. Yoon, H. W. Park, and D. W. Park, Simultaneous oxidation and absorption of $NO_x$ and $SO_2$ in an integrated $O_3$ oxidation/wet atomizing system, Energy Fuels, 30, 3289-3297 (2016). https://doi.org/10.1021/acs.energyfuels.5b02924
  55. S. Guo, L. Lv, J. Zhang, X. Chen, M. Tong, W. Kang, Y. Zhou, and J. Lu, Simultaneous removal of $SO_2$ and $NO_x$ with ammonia combined with gas-phase oxidation of NO using ozone, Chem. Ind. Chem. Eng. Q., 21, 305-310 (2015). https://doi.org/10.2298/CICEQ140618029G
  56. C. Sun, N. Zhao, H. Wang, and Z. Wu, Simultaneous absorption of $NO_x$ and $SO_2$ using magnesia slurry combined with ozone oxidation, Energy Fuels, 29, 3276-3283 (2015). https://doi.org/10.1021/acs.energyfuels.5b00229
  57. R. Kikuchi and Y. Pelovski, Low-dose irradiation by electron beam for the treatment of high-$SO_x$ flue gas on a semi-pilot scale-consideration of by-product quality and approach to clean technology, Process Saf. Environ. Prot., 87, 135-143 (2009). https://doi.org/10.1016/j.psep.2008.10.003
  58. I. Calinescu, D. Martin, A. Chmielewski, and D. Ighigeanu, E-beam $SO_2$ and $NO_x$ removal from flue gases in the presence of fine water droplets, Radiat. Phys. Chem., 85, 130-138 (2013). https://doi.org/10.1016/j.radphyschem.2012.10.008
  59. H. Namba, O. Tokunaga, S. Hashimoto, T. Tanaka, Y. Ogura, Y. Doi, S. Aoki, and M. Izutsu, Pilot scale test for electron beam purification of flue gas from coal-combustion boiler, Radiat. Phys. Chem., 46, 1103-1106 (1995). https://doi.org/10.1016/0969-806X(95)00331-Q
  60. A. G. Chmielewski, B. Tyminski, J. Licki, E. Iller, Z. Zimek, and A. Dobrowolski, Pilot plant for flue gas treatment with electron beam-start up and two stage irradiation tests, Radiat. Phys. Chem., 42, 663-668 (1993). https://doi.org/10.1016/0969-806X(93)90348-X
  61. A. G. Chmielewski, B. Tyminski, J. Licki, E. Iller, Z. Zimek, and B. Radzio, Pilot plant for flue gas treatment-continuous operation test, Radiat. Phys. Chem., 46, 1067-1070 (1995). https://doi.org/10.1016/0969-806X(95)00322-O
  62. A. G. Chmielewski, E. Iller, Z. Zimek, and J. Licki, Pilot plant for electron beam flue gas treatment, Radiat. Phys. Chem., 40, 321-325 (1992).
  63. J. S. Chang, P. C. Looy, K. Nagai, T. Yoshioka, S. Aoki, and A. Maezawa, Preliminary pilot plants tests of a corona discharge- electron beam hybrid combustion flue gas cleaning system, IEEE Trans. Ind. Appl., 32, 131-137 (1996). https://doi.org/10.1109/28.485824
  64. Y. Doi, I. Nakanishi, and Y. Konno, Operational experience of a commercial scale plant of electron beam purification of flue gas, Radiat. Phys. Chem., 57, 495-499 (2000). https://doi.org/10.1016/S0969-806X(99)00496-X
  65. J. Kim, Y. Kim, B. Han, N. Doutzkinov, and K. Y. Jeong, Electron-beam flue-gas treatment plant for thermal power station "Sviloza" AD in Bulgaria, J. Korean Phys. Soc., 59, 3494-3498 (2011). https://doi.org/10.3938/jkps.59.3494
  66. A. Pawelec, A. G. Chmielewski, J. Licki, B. Han, J. Kim, N. Kunnummal, and O. I. Fageeha, Pilot plant for electron beam treatment of flue gases from heavy fuel oil fired boiler, Fuel Process. Technol., 145, 123-129 (2016). https://doi.org/10.1016/j.fuproc.2016.02.002
  67. E. Tan, S. Unal, A. Dogan, E. Letournel, and F. Pellizzari, New "wet type" electron beam flue gas treatment pilot plant, Radiat. Phys. Chem., 119, 109-115 (2016). https://doi.org/10.1016/j.radphyschem.2015.10.007
  68. A. A. Basfar, O.I. Fageeha, N. Kunnummal, A. G. Chmielewski, J. Licki, A. Pawelec, Z. Zimek, and J. Warych, A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology, Int. J. Nucl. Res., 55, 271-277 (2010).