Improvement of Hard Coating Characteristics by UV-curable Organic/Inorganic Hybrids

자외선 경화형 유기/무기 하이브리드에 의한 하드코팅 특성 향상

  • Han, Ji-Ho (LG Chem R&D Campus Daejeon) ;
  • Kim, Hyung-Il (Department of Applied Chemical Engineering, Chungnam National University)
  • Received : 2017.08.16
  • Accepted : 2017.09.06
  • Published : 2017.12.10


Transparent plastic substrates require an improvement in properties such as surface hardness and thermal stability for optical applications. In this study, UV-curable organic/inorganic hybrids were synthesized to improve those properties. In order to make the optimum dispersion of inorganic component into the organic matrix, an in situ synthetic method was applied based on sol-gel reaction. Dispersion of the inorganic component in the organic urethane acrylate matrix was improved by using a proper combination of sol-gel reaction and fast UV-curing resulting in the formation of the transparent coating layer. Various alkoxy silanes were employed to vary both the degree of curing and coating properties of UV-curable organic/inorganic hybrids. UV-cured organic/inorganic hybrid coatings showed an improved surface hardness and thermal resistance depending on the content of inorganic component.


Supported by : 충남대학교


  1. J. Lewis, Material challenge for flexible organic devices, Mater. Today, 9, 38-45 (2006).
  2. M. C. Choi, Y. Kim, and C. S. Ha, Polymers for flexible displays: from material selection to device applications, Prog. Polym. Sci., 33, 581-630 (2008).
  3. J. Jang, Displays develop a new flexibility, Mater. Today, 9, 46-52 (2006).
  4. A. M. Fogg, G. R. Williams, R. Chester, and D. O'Hare, A novel family of layered double hydroxides, J. Mater. Chem., 14, 2369-2371 (2004).
  5. J. Zarzycki, Past and present of sol-gel science and technology, J. Solgel Sci. Technol., 8, 17-22 (1997).
  6. J. D. Mackenzie and E. P. Bescher, Physical properties of sol-gel coatings, J. Solgel Sci. Technol., 19, 23-29 (2000).
  7. F. Hoffmann, M. Cornelius, J. Morell, and M. Froba, Silica-based mesoporous organic-inorganic hybrid materials, Angew. Chem. Int. Ed., 45, 3216-3251 (2006).
  8. L. Xu, P. Zhao, J. Su, B. Liu, X. Peng, J. Liu, and S. Wang, An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater, Adv. Mater., 25, 606-611 (2013).
  9. P. Beili, C. M. Ryu, and H. I. Kim, Improvement of thermal stability of UV curable pressure sensitive adhesive by surface modified silica nanoparticles, Mater. Sci. Eng. B, 178, 1212-1218 (2013).
  10. Y. S. Lin, C. H. Hu, and C. Hsiao, Enhanced scratch resistance of flexible carbon fiber-reinforced polymer composites by low temperature plasma-polymerized organosilicon oxynitride: The effects of nitrogen addition, Compos. Sci. Technol., 71, 1579-1586 (2011).
  11. F. Khelifa, M. E. Druart, Y. Habibi, F. Benard, P. Leclere, M. Olivier, and P. Dubois, Sol-gel incorporation of silica nanofillers for tuning the anti-corrosion protection of acrylate-based coatings, Prog. Org. Coat., 76, 900-911 (2013).
  12. D. Terribile, A. Trovarelli, J. Llorca, C. Leitenburg, and G. Dolcetti, The synthesis and characterization of mesoporous high-surface area ceria prepared using a hybrid organic/inorganic route, J. Catal., 178, 299-308 (1998).
  13. M. D. McGehee, Nanostructured organic-inorganic hybrid solar cells, MRS Bull., 34, 95-100 (2009).
  14. T. P. Chou, C. Chandrasekaran, S. J. Limmer, S. Seraji, Y. Wu, M. J. Forbess, C. Nguyen, and G. Z. Cao, Organic-inorganic hybrid coatings for corrosion protection, J. Non Cryst. Solids, 290, 153-162 (2001).
  15. J. F. Lin, W. C. Yen, C. Y. Chang, Y. F. Chen, and W. F. Su, Enhancing organic-inorganic hybrid solar cell efficiency using rod-coil diblock polymer additive, J. Mater. Chem. A, 1, 665-670 (2013).
  16. W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564-1583 (1992).
  17. R. M. Almeida and C. G. Pantano, Structural investigation of silica gel films by infrared spectroscopy, J. Appl. Phys., 68, 4225-4232 (1990).
  18. T. Y. Lee, T. M. Roper, E. S. Jonsson, I. Kudyakov, K. Viswanathan, C. Nason, C. A. Guvmon, and C. E. Hovie, The kinetics of vinyl acrylate photopolymerization, Polymer, 44, 2859-2865 (2003).
  19. P. Innocenz. M. O. Abdirashid, and M. Gugliemi, Structure and properties of sol-gel coatings from methyltriethoxysilane and tetraethoxysilane, J. Solgel Sci. Technol., 3, 47-55 (1994).
  20. A. Matsuda, Y. Matsuno, M. Tatsumisago, and T. Minami, Fine patterning and characterization of gel films derived from methyltriethoxysilane and tetraethoxysilane, J. Am. Ceram. Soc., 81, 2849-2852 (1998).
  21. T. Kashiwagi, A. B. Morgan, J. M. Antonucci, M. R. VanLandingham, R. H. Harris, W. H. Awad, and J. R. Shields, Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite, J. Appl. Polym. Sci., 89, 2072-2078 (2003).