Oxyfluorination of Pitch-based Activated Carbon Fibers for High Power Electric Double Layer Capacitor

고출력 전기이중층 캐패시터를 위한 핏치계 활성탄소섬유의 함산소불소화 처리

  • Jung, Min-Jung (Department of Engineering chemistry and Applied Chemistry, Chungnam National University) ;
  • Ko, Yoonyoung (Department of Engineering chemistry and Applied Chemistry, Chungnam National University) ;
  • Kim, Kyung Hoon (Department of Engineering chemistry and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Engineering chemistry and Applied Chemistry, Chungnam National University)
  • 정민정 (충남대학교 응용화학공학과) ;
  • 고윤영 (충남대학교 응용화학공학과) ;
  • 김경훈 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2017.08.14
  • Accepted : 2017.09.12
  • Published : 2017.12.10


Pitch based activated carbon fibers for electric double layer capacitor (EDLC) electrodes were treated by oxyfluorination via varying the ratio of fluorine and oxygen gases to improve high power property. As the partial pressure of fluorine increased, the oxyfluorinated activated carbon fibers showed an increase of linear fluorine functional groups. While the oxygen functional groups increased, no changes was observed with respect to the partial gas pressure. The specific surface area and pore volume decreased due to the etching reaction on the activated carbon fiber surface through oxyfluorination, but the mesopore volume increased about 4.5 times. In the case of activated carbon fibers treated with 50% of the fluorine gas partial pressure, the specific capacitance increased to about 29% and 61% at scan rates of 5 and 50 mV/s, respectively. The improvement of the specific capacitance was believed to be due to the introduction of oxygen and fluorine functional groups on the activated carbon fiber surface and the increase of mesopores through oxyfluorination.


  1. H. Ji, X. Zhao, Z. Qiao, J. Jung, Y. Zhu, Y. Lu, L. L. Zhang, A. H. MacDonald, and R. S. Ruoff, Capacitance of carbon-based electrical double-layer capacitors, Nat. Commun., 5, 3317 (2014).
  2. N. L. Torad, R. R. Salunkhe, Y. Li, H. Hamoudi, M. Imura, Y. Sakka, C. C. Hu, and Y. Yamauchi, Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67, Chem. Eur. J., 20, 7895-7900 (2014).
  3. D. Bhattacharjy and J. S. Yu, Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor, J. Power Sources, 262, 224-231 (2014).
  4. L. Wei and G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon, 49, 4830-4838 (2011).
  5. Q. Li, F. Liu, L. Zhang, B. J. Nelson, S. Zhang, C. Ma, X. Tao, J. Cheng, and X. Zhang, In situ construction of potato starch based carbon nanofiber/activated carbon hybrid structure for high-performance electrical double layer capacitor, J. Power Sources, 207, 199-204 (2012).
  6. M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor, J. Colloid Interface Sci., 381, 152-157 (2012).
  7. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Preparation and electrochemical characterization of activated carbon electrode by amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
  8. C. Lei, N. Amini, F. Markoulidis, P. Wilson, S. Tennison, and C. Lekakou, Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC), J. Mater. Chem. A, 1, 6037-6042 (2013).
  9. V. Gupta and N. Miura, Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors, Electrochim. Acta, 52, 1721-1726 (2006).
  10. E. R. Thomas, D. Hulicova-Jurcakova, Z. Zhu, and G. Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors, Electrochem. Commun., 10, 1594-1597 (2008).
  11. E. Lee, S. H. Kwon, P. Choi, J. C. Jung, and M. S. Kim, Electrochemical performance of activated carbon electrode materials with various post treatments for EDLC, Korean J. Mater. Res., 24, 285-292 (2014).
  12. J. G. Wu, I. P. Hong, S. M. Park, S. Y. Lee, and M. S. Kim, Electrochemical properties of EDLC electrodes prepared by acid and heat treatment of commercial activated carbons, Carbon Lett., 9, 137-144 (2008).
  13. M. J. Jung, H. R. Yu, D. Lee, and Y. S. Lee, Effect of boric acid treatment on the electrochemical properties of the phenol-based activated carbon, Appl. Chem. Eng., 24, 201-207 (2013).
  14. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002).
  15. M. J. Jung, E. Jeong, S. Kim, S. I. Lee, J. S. Yoo, and Y. S. Lee, Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, J. Fluor. Chem., 132, 1127-1133 (2011).
  16. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of chromium ion at low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015).
  17. R. Hesse, P. Streubel, and R. Szargan, Product or sum: comparative tests of Voigt, and product or sum of Gaussian and Lorentzian functions in the fitting of synthetic Voigt-based X-ray photoelectron spectra, Surf. Interface Anal., 39, 381-391 (2007).
  18. C. Popov, M. F. Plass, A. Bergmaier, and W. Kulisch, Synthesis of carbon nitride films by low-power inductively coupled plasma- activated transport reactions from a solid carbon source, Appl. Phys. A, 69, 241-244 (1999).
  19. A. Tressaud, E. Durand, and C. Labrugere, Surface modification of several carbon-based materials: comparison between $CF_4$ rf plasma and direct $F_2$-gas fluorination routes, J. Fluor. Chem., 125, 1639-1648 (2004).
  20. R. B. Mathur, V. Gupta, O. P. Bahl, A. Tressaud, and S. Flandrois, Improvement in the mechanical properties of polyacrylonitrile (PAN)-based carbon fibers after fluorination, Synth. Met., 114, 197-200 (2000).
  21. Y. S. Lee and B. K. Lee, Surface properties of oxyfluorinated PAN-based carbon fibers, Carbon, 40, 2461-2468 (2002).
  22. M. J. Jung, J. W. Lim, I. J. Park, and Y. S. Lee, Fluorination of polymethylmethacrylate (PMMA) film and its surface characterization, Appl. Chem. Eng., 21, 317-322 (2010).
  23. A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapotke, H. Zell, and W. Michaeli, Influence of fluorination on the properties of carbon fibres, J. Fluor. Chem., 84, 127-134 (1997).
  24. G. Milczarek, A. Ciszewski, and I. Stepniak, Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor, J. Power Sources, 196, 7882-7885 (2011).
  25. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, and Y. Yang, Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte, J. Power Sources, 195, 2118-2124 (2010).
  26. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity (2nd ed.), Academy Press, London, UK (1982).
  27. K. Laszlo, Adsorption from aqueous phenol and aniline solutions on activated carbons with different surface chemistry, Colloid Surf. A, 265, 32-39 (2005).
  28. E. Jeong, M. J. Jung, and Y.-S. Lee, Role of fluorination in improvement of the electrochemical properties of activated carbon nanofiber electrodes, J. Fluor. Chem., 150, 98-103 (2013).
  29. M. J. Jung, E. Jeong, and Y. S. Lee, The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor, Appl. Surf. Sci., 347, 250-257 (2015).
  30. K. L. Yang, S. Yiacoumi, and C. Tsouris, Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry, J. Electroanal. Chem., 540, 159-167 (2003).
  31. Y. H. Lee, K. H. Chang, and C. C. Hu, Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen- doped reduced graphene oxide in acidic and alkaline electrolytes, J. Power Sources, 227, 300-308 (2013).
  32. M. Ramani, B. S. Haran, R. E. White, and B. N. Popov, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors, J. Electrochem. Soc., 148, A374-A380 (2001).
  33. M. J. Jung E. Jeong, J. W. Lim, S. I. Lee, and Y. S. Lee, Physico-chemical surface modification of activated carbon by oxyfluorination and its electrochemical characterization, Colloid Surf. A, 389, 274-280 (2011).
  34. W. Xiong, M. Liu, L. Gan, Y. Lva, Y. Li, L. Yang, Z. Xu, Z. Hao, H. Liu, and L. Chen, A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes, J. Power Sources, 196, 10461-10464 (2011).
  35. M. Endo, T. Takeda, Y. J. Kim, K. Koshiba, and K. Ishii, Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure, Carbon Lett., 1, 117-128 (2001).
  36. M. J. Jung, E. Jeong, Y. Kim, and Y. S. Lee, Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors, J. Ind. Eng. Chem., 19, 1315-1319 (2013).
  37. C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Reda, J. Parmentier, J. Patarin, and F. Beguin, Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure, Mater. Sci. Eng. B, 108, 148-155 (2004).