Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation

가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응에 대한 무기염의 영향

  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University) ;
  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Hong, Seong Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2017.08.29
  • Accepted : 2017.09.27
  • Published : 2017.12.10


Sulfide photocatalysts, CdS and CdZnS, were synthesized using a simple precipitation method and their photocatalytic activities were evaluated by the degradation of rhodamine B under visible light irradiation. The effects of four inorganic salt additives, KCl, NaCl, $K_3PO_4$, and $Na_3PO_4$, on the photocatalytic reaction were examined and the role of $K^+$, $Na^+$, $Cl^-$ and $PO_4{^{3-}}$ ions during photocatalytic reaction was discussed. The added inorganic salts were shown to have a remarkable effect on the photocatalytic reaction. It was also found that the anions in inorganic salts have a much more profound effect on the reaction rate, as compared to the cations. Under the present experimental conditions, $PO_4{^{3-}}$ revealed a significant inhibitory effect on the degradation rate whereas $Cl^-$ enhanced the rate slightly. This work pointed out that the consideration of additive effects is needed in the photocatalytic reaction for wastewater treatment.


Supported by : 부경대학교


  1. P. C. C. Faria, J. J. M. Orfao, and M. F. R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 38, 2043-2052 (2004).
  2. T. S. Natarajan, K. Natarajan, H. C. Bajaj, and R. J. Tayade, Study on identification of leather industry waste water constituents and its photocatalytic treatment, Int. J. Environ. Sci. Technol., 10, 855-864 (2013).
  3. A. Khanna and V. Shetty, Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using $Ag@TiO_2$ core-shell structured nanoparticles, Environ. Sci. Pollut. Res., 20, 5692-5707 (2013).
  4. A. Socha, E. Sochocka, R. Podsiadly, and J. Sokolowaka, Electrochemical and photoelectrochemical treatment of C. I. Acid Violet I. Dyes Pigm., 73, 390-393 (2007).
  5. T. Bora, P. Sathe, K. Laxman, S. Dobretsov, and J. Dutta, Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water, Catal. Today, 284, 11-18 (2017).
  6. X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, Photocatalytic activity of $WO_{x}-TiO_{2}$ under visible light irradiation, J. Photochem. Photobio. A, 141, 209-217 (2001).
  7. Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, and C. Li, Photocatalytic water reduction under visible light on a novel $ZnIn_2S_4$ catalyst synthesized by hydrothermal method, Chem. Commun., 2142-2143 (2003).
  8. R. S. Ganesh, S. K. Sharma. E. Durgadevi, M. Navaneethan, H. S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, and D. Y. Kim, Surfactant free synthesis of CdS nanospheres, microstructural analysis, chemical bonding, optical properties and photocatalytic activities, Superlattices Microstruct., 104, 247-257 (2017).
  9. H. Zhu, R. Jianga, L. Xiao, Y. Chang, Y. Guan, X. Li, and G. Zeng, Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation, J. Hazard. Mater., 169, 933-940 (2009).
  10. S. Xie, X. Lu, T. Zhai, J. Gan, W. Li, M. Xu, M. Yu, Y.-M. Zhang, and Y. Tong, Controllable synthesis of $Zn_xCd_{1-x}S@ZnO$ core-shell nanorods with enhanced photocatalytic activity, Langmuir, 28, 10558-10564 (2012).
  11. N. Li, B. Zhou, P. Guo, J. Zhou, and D. Jing, Fabrication of noble-metal-free $Cd_{0.5}Zn_{0.5}S/NiS$ hybrid photocatalysts for efficient solar hydrogen evolution, Int. J. Hydrogen Energy, 38, 11268-11277 (2013).
  12. X. Wang, H. Tian, X. Cui, W. Zheng, and Y. Liu, One-pot hydrothermal synthesis of mesoporous $Zn_xCd_{1-x}S$/reduced graphene oxide hybrid material and its enhanced photocatalytic activity, Dalton Trans., 43, 12894-12903 (2014).
  13. W. Li, D. Li, S. Meng, W. Chen, X. Fu, and Y. Shao, Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the $Zn_xCd_{1-x}S$/$TiO_2$ nanocomposites, Environ. Sci. Technol., 45, 2987-2993 (2011).
  14. J. F. Budarz, A. Turolla, A. F. Piasecki, J.-Y. Bottero, M. Antonelli, and M. R. Wiesner, Influence of aqueous inorganic anions on the reactivity of nanoparticles in $TiO_2$ photocatalysis, Langmuir, 33, 2770-2779 (2017).
  15. A. M. Dugandzic, A. V. Tomasevic, M. M. Radisic, N. Z. Sekuljica, D. Z. Mijin, and S. D. Petrovic, Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron, J. Photochem. Photobiol. A, 336, 146-155 (2017).
  16. P. A. Pekakis, N. P. Xekoukoulotakis, and D. Mantzavinos, Treatment of textile dyehouse wastewater by $TiO_2$ photocatalysis, Water Res., 40, 1276-1286 (2006).
  17. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J.-M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by $TiO_2$ comparison of the efficiency of powder and supported $TiO_2$, J. Photochem. Photobiol. A, 158, 27-36 (2003).
  18. M. Bhati and G. Singh, Growth and mineral accumulation in Eucalyptus camaldulensis seedlings irrigated with mixed industrial effluents, Bioresour. Technol., 88, 221-228 (2003).
  19. S. S. Asharf, M. A. Rauf, and S. Alhadrami, Degradation of methyl red using Fenton's reagent and the effect of various salts, Dye and Pigment, 69, 74-78 (2006).
  20. Z .R. Khan, M. Zulfequar, and M. S. Khan, Chemical synthesis of CdS nanoparticles and their optical and dielectric studies, J. Mater. Sci., 46, 5412-5416 (2011).
  21. X. Wang, G. Liu, Z.-H. Chen, and F. Li, Highly efficient $H_2$ evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing $SO_3^{2-}$ and $S^{2-}$ ions, J. Mater. Res., 25, 39-44 (2010).
  22. Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong, $Zn_xCd_{1-x}S$ solid solutions with controlled bandgap and enhanced visible-light photocatalytic $H_2$-production activity, ACS Catal., 3, 882-889 (2013).
  23. K. Zhang, D. Jing, Q. Chen, and L. Guo, Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts, Int. J. Hydrogen Energy, 35, 2048-2057 (2010).
  24. E. A. Kozlova, D. V. Markovskaya, S. V. Cherepanova, A. A. Saraev, E. Yu Gerasimov, T. V. Perevalov, V. V. Kaichev, and V. N. Parmon, Novel photocatalysts based on $Cd_{1-x}Zn_xS/Zn(OH)_2$ for the hydrogen evolution from water solutions of ethanol, Int. J. Hydrogen Energy, 39, 18758-18769 (2014).
  25. W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, and J. G. McEvoy, Photocatalytic activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for rhodamine B degradation under visible light irradiation, Appl. Surf. Sci., 271, 171-181 (2013).
  26. Y. Li, L. Tang, S. Peng, Z. Li, and G. Lu, Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution, CrystEngComm, 14, 6974-6982 (2012).
  27. G. A. Tai, J. X. Zhou, and W. L. Guo, Inorganic salt-induced phase control and optical characterization of cadmium sulfide nanoparticles, Nanotechnology, 21, 175601-175607 (2010).
  28. D. Jing and L. Guo, A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure, J. Phys. Chem. B, 110, 11139-11145 (2006).
  29. W. Wang, W. Zhu, and H. Xu, Monodisperse, mesoporous $Zn_xCd_{1-x}S$ nanoparticles as stable visible-light-driven photocatalysts, J. Phys. Chem. C, 112, 16754-16758 (2008).
  30. F. Chen, D. Jia, Y. Cao, X. Jin, and A. Liu, Facile synthesis of CdS nanorods with enhanced photocatalytic activity, Ceram. Int., 41, 14604-14609 (2015).
  31. Y. Min, J. Fan, Q. Xu, and S. Zhang, High visible-photoactivity of spherical $Cd_{0.5}Zn_{0.5}S$ coupled with graphene composite for decolorizating organic dyes, J. Alloy Compd., 609, 46-53 (2014).
  32. K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over $NaBiO_3$: pathways and mechanism, J. Phys. Chem. A, 113, 10024-10032 (2009).
  33. A. M. Khan, A. Mehmooda, M. Sayed, M. F. Nazar, B. Ismail, R. A. Khan, H. Ullah, H. M. A. Rehman, A. Y. Khane, and A. R. Khan, Influence of acids, bases and surfactants on the photocatalytic degradation of a model dye rhodamine B, J. Mol. Liq., 236, 395-403 (2017).
  34. G. Guillard, E. Puzenet, H. Lachheb, A. Houas, and J.-M. Herrmann, Why inorganic salts decrease the $TiO_2$ photocatalytic efficiency, Int. J. Photoenergy, 7, 1-9 (2005).
  35. N. Rioja, S. Zorita, and F. J. Penas, Effect of water matrix on photocatalytic degradation and general kinetic modeling, Appl. Catal. B, 180, 330-335 (2016).
  36. M. Makita and A. Harata, Photocatalytic decolorization of rhodamine B dye as a model of dissolved organic compounds: Influence of dissolved inorganic chloride salts in seawater of the Sea of Japan, Chem. Eng. Process., 47, 859-863 (2008).
  37. C. Chen, W. Zhao, J. Li, and J. Zhao, Formation and identification of intermediates in visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous $TiO_2$ dispersion, Environ. Sci. Technol., 36, 3604-3611 (2002).
  38. J. Zhuang, W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, and P. Liu, Photocatalytic degradation of RhB over $TiO_2$ bilayer films: effect of defects and their location, Langmuir, 26, 9686-9694 (2010).
  39. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, Synthesis and characterization of high efficiency and stable $Ag_3PO_4$/$TiO_2$ visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem., 22, 4050-4055 (2012).
  40. C.-C. Yang, C.-L. Huang, T.-C. Cheng, and H.-T. Lai, Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics, Int. Biodeterior. Biodegrad., 102, 116-125 (2015).
  41. R. Yuan, S. N. Ramjaun, Z. Wang, and J. Liu, Photocatalytic degradation and chlorination of azo dye in saline wastewater: kinetics and AOX formation, Chem. Eng. J., 192, 171-178 (2012).
  42. H. Y. Chen, O. Zahra, and M. Bouchy, Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of $TiO_2$ by inorganic ions, J. Photochem. Photobiol. A, 108, 37-44 (1997).
  43. A. Piscopo, D. Robert, and J. V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds. Part I. Effect on the benzamide and para-hydroxybenzoic acid in $TiO_2$ aqueous solution, Appl. Catal. B, 35, 117-124 (2001).
  44. R. X. Yuan, Z. Wang, Y. Hu, B. Wang, and S. Gao, Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification, Chemosphere, 109, 106-112 (2014).
  45. J. Yan, K. Wang, H. Xu, J. Qian, W. Liu, X. Yang, and H. Li, Visible-light photocatalytic efficiencies and anti-photocorrosion behavior of CdS/graphene nanocomposite: Evaluation using methylene blue degradation, Chin. J. Catal., 34, 1876-1882 (2013).