DOI QR코드

DOI QR Code

Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation

가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응에 대한 무기염의 영향

  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University) ;
  • Jin, Youngeup (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Hong, Seong Soo (Department of Chemical Engineering, Pukyong National University)
  • Received : 2017.08.29
  • Accepted : 2017.09.27
  • Published : 2017.12.10

Abstract

Sulfide photocatalysts, CdS and CdZnS, were synthesized using a simple precipitation method and their photocatalytic activities were evaluated by the degradation of rhodamine B under visible light irradiation. The effects of four inorganic salt additives, KCl, NaCl, $K_3PO_4$, and $Na_3PO_4$, on the photocatalytic reaction were examined and the role of $K^+$, $Na^+$, $Cl^-$ and $PO_4{^{3-}}$ ions during photocatalytic reaction was discussed. The added inorganic salts were shown to have a remarkable effect on the photocatalytic reaction. It was also found that the anions in inorganic salts have a much more profound effect on the reaction rate, as compared to the cations. Under the present experimental conditions, $PO_4{^{3-}}$ revealed a significant inhibitory effect on the degradation rate whereas $Cl^-$ enhanced the rate slightly. This work pointed out that the consideration of additive effects is needed in the photocatalytic reaction for wastewater treatment.

Acknowledgement

Supported by : 부경대학교

References

  1. P. C. C. Faria, J. J. M. Orfao, and M. F. R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 38, 2043-2052 (2004). https://doi.org/10.1016/j.watres.2004.01.034
  2. T. S. Natarajan, K. Natarajan, H. C. Bajaj, and R. J. Tayade, Study on identification of leather industry waste water constituents and its photocatalytic treatment, Int. J. Environ. Sci. Technol., 10, 855-864 (2013). https://doi.org/10.1007/s13762-013-0200-9
  3. A. Khanna and V. Shetty, Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using $Ag@TiO_2$ core-shell structured nanoparticles, Environ. Sci. Pollut. Res., 20, 5692-5707 (2013). https://doi.org/10.1007/s11356-013-1582-4
  4. A. Socha, E. Sochocka, R. Podsiadly, and J. Sokolowaka, Electrochemical and photoelectrochemical treatment of C. I. Acid Violet I. Dyes Pigm., 73, 390-393 (2007). https://doi.org/10.1016/j.dyepig.2006.01.007
  5. T. Bora, P. Sathe, K. Laxman, S. Dobretsov, and J. Dutta, Defect engineered visible light active ZnO nanorods for photocatalytic treatment of water, Catal. Today, 284, 11-18 (2017). https://doi.org/10.1016/j.cattod.2016.09.014
  6. X. Z. Li, F. B. Li, C. L. Yang, and W. K. Ge, Photocatalytic activity of $WO_{x}-TiO_{2}$ under visible light irradiation, J. Photochem. Photobio. A, 141, 209-217 (2001). https://doi.org/10.1016/S1010-6030(01)00446-4
  7. Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, and C. Li, Photocatalytic water reduction under visible light on a novel $ZnIn_2S_4$ catalyst synthesized by hydrothermal method, Chem. Commun., 2142-2143 (2003).
  8. R. S. Ganesh, S. K. Sharma. E. Durgadevi, M. Navaneethan, H. S. Binitha, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, and D. Y. Kim, Surfactant free synthesis of CdS nanospheres, microstructural analysis, chemical bonding, optical properties and photocatalytic activities, Superlattices Microstruct., 104, 247-257 (2017). https://doi.org/10.1016/j.spmi.2017.02.029
  9. H. Zhu, R. Jianga, L. Xiao, Y. Chang, Y. Guan, X. Li, and G. Zeng, Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation, J. Hazard. Mater., 169, 933-940 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.037
  10. S. Xie, X. Lu, T. Zhai, J. Gan, W. Li, M. Xu, M. Yu, Y.-M. Zhang, and Y. Tong, Controllable synthesis of $Zn_xCd_{1-x}S@ZnO$ core-shell nanorods with enhanced photocatalytic activity, Langmuir, 28, 10558-10564 (2012). https://doi.org/10.1021/la3013624
  11. N. Li, B. Zhou, P. Guo, J. Zhou, and D. Jing, Fabrication of noble-metal-free $Cd_{0.5}Zn_{0.5}S/NiS$ hybrid photocatalysts for efficient solar hydrogen evolution, Int. J. Hydrogen Energy, 38, 11268-11277 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.067
  12. X. Wang, H. Tian, X. Cui, W. Zheng, and Y. Liu, One-pot hydrothermal synthesis of mesoporous $Zn_xCd_{1-x}S$/reduced graphene oxide hybrid material and its enhanced photocatalytic activity, Dalton Trans., 43, 12894-12903 (2014). https://doi.org/10.1039/C4DT01094A
  13. W. Li, D. Li, S. Meng, W. Chen, X. Fu, and Y. Shao, Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the $Zn_xCd_{1-x}S$/$TiO_2$ nanocomposites, Environ. Sci. Technol., 45, 2987-2993 (2011). https://doi.org/10.1021/es103041f
  14. J. F. Budarz, A. Turolla, A. F. Piasecki, J.-Y. Bottero, M. Antonelli, and M. R. Wiesner, Influence of aqueous inorganic anions on the reactivity of nanoparticles in $TiO_2$ photocatalysis, Langmuir, 33, 2770-2779 (2017). https://doi.org/10.1021/acs.langmuir.6b04116
  15. A. M. Dugandzic, A. V. Tomasevic, M. M. Radisic, N. Z. Sekuljica, D. Z. Mijin, and S. D. Petrovic, Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron, J. Photochem. Photobiol. A, 336, 146-155 (2017). https://doi.org/10.1016/j.jphotochem.2016.12.031
  16. P. A. Pekakis, N. P. Xekoukoulotakis, and D. Mantzavinos, Treatment of textile dyehouse wastewater by $TiO_2$ photocatalysis, Water Res., 40, 1276-1286 (2006). https://doi.org/10.1016/j.watres.2006.01.019
  17. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J.-M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by $TiO_2$ comparison of the efficiency of powder and supported $TiO_2$, J. Photochem. Photobiol. A, 158, 27-36 (2003). https://doi.org/10.1016/S1010-6030(03)00016-9
  18. M. Bhati and G. Singh, Growth and mineral accumulation in Eucalyptus camaldulensis seedlings irrigated with mixed industrial effluents, Bioresour. Technol., 88, 221-228 (2003). https://doi.org/10.1016/S0960-8524(02)00317-6
  19. S. S. Asharf, M. A. Rauf, and S. Alhadrami, Degradation of methyl red using Fenton's reagent and the effect of various salts, Dye and Pigment, 69, 74-78 (2006). https://doi.org/10.1016/j.dyepig.2005.02.009
  20. Z .R. Khan, M. Zulfequar, and M. S. Khan, Chemical synthesis of CdS nanoparticles and their optical and dielectric studies, J. Mater. Sci., 46, 5412-5416 (2011). https://doi.org/10.1007/s10853-011-5481-0
  21. X. Wang, G. Liu, Z.-H. Chen, and F. Li, Highly efficient $H_2$ evolution over ZnO-ZnS-CdS heterostructures from an aqueous solution containing $SO_3^{2-}$ and $S^{2-}$ ions, J. Mater. Res., 25, 39-44 (2010). https://doi.org/10.1557/JMR.2010.0018
  22. Q. Li, H. Meng, P. Zhou, Y. Zheng, J. Wang, J. Yu, and J. Gong, $Zn_xCd_{1-x}S$ solid solutions with controlled bandgap and enhanced visible-light photocatalytic $H_2$-production activity, ACS Catal., 3, 882-889 (2013). https://doi.org/10.1021/cs4000975
  23. K. Zhang, D. Jing, Q. Chen, and L. Guo, Influence of Sr-doping on the photocatalytic activities of CdS-ZnS solid solution photocatalysts, Int. J. Hydrogen Energy, 35, 2048-2057 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.143
  24. E. A. Kozlova, D. V. Markovskaya, S. V. Cherepanova, A. A. Saraev, E. Yu Gerasimov, T. V. Perevalov, V. V. Kaichev, and V. N. Parmon, Novel photocatalysts based on $Cd_{1-x}Zn_xS/Zn(OH)_2$ for the hydrogen evolution from water solutions of ethanol, Int. J. Hydrogen Energy, 39, 18758-18769 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.145
  25. W. Cui, S. Ma, L. Liu, J. Hu, Y. Liang, and J. G. McEvoy, Photocatalytic activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for rhodamine B degradation under visible light irradiation, Appl. Surf. Sci., 271, 171-181 (2013). https://doi.org/10.1016/j.apsusc.2013.01.156
  26. Y. Li, L. Tang, S. Peng, Z. Li, and G. Lu, Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution, CrystEngComm, 14, 6974-6982 (2012). https://doi.org/10.1039/c2ce25838b
  27. G. A. Tai, J. X. Zhou, and W. L. Guo, Inorganic salt-induced phase control and optical characterization of cadmium sulfide nanoparticles, Nanotechnology, 21, 175601-175607 (2010). https://doi.org/10.1088/0957-4484/21/17/175601
  28. D. Jing and L. Guo, A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure, J. Phys. Chem. B, 110, 11139-11145 (2006). https://doi.org/10.1021/jp060905k
  29. W. Wang, W. Zhu, and H. Xu, Monodisperse, mesoporous $Zn_xCd_{1-x}S$ nanoparticles as stable visible-light-driven photocatalysts, J. Phys. Chem. C, 112, 16754-16758 (2008). https://doi.org/10.1021/jp805359r
  30. F. Chen, D. Jia, Y. Cao, X. Jin, and A. Liu, Facile synthesis of CdS nanorods with enhanced photocatalytic activity, Ceram. Int., 41, 14604-14609 (2015). https://doi.org/10.1016/j.ceramint.2015.07.179
  31. Y. Min, J. Fan, Q. Xu, and S. Zhang, High visible-photoactivity of spherical $Cd_{0.5}Zn_{0.5}S$ coupled with graphene composite for decolorizating organic dyes, J. Alloy Compd., 609, 46-53 (2014). https://doi.org/10.1016/j.jallcom.2014.04.143
  32. K. Yu, S. Yang, H. He, C. Sun, C. Gu, and Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over $NaBiO_3$: pathways and mechanism, J. Phys. Chem. A, 113, 10024-10032 (2009). https://doi.org/10.1021/jp905173e
  33. A. M. Khan, A. Mehmooda, M. Sayed, M. F. Nazar, B. Ismail, R. A. Khan, H. Ullah, H. M. A. Rehman, A. Y. Khane, and A. R. Khan, Influence of acids, bases and surfactants on the photocatalytic degradation of a model dye rhodamine B, J. Mol. Liq., 236, 395-403 (2017). https://doi.org/10.1016/j.molliq.2017.04.063
  34. G. Guillard, E. Puzenet, H. Lachheb, A. Houas, and J.-M. Herrmann, Why inorganic salts decrease the $TiO_2$ photocatalytic efficiency, Int. J. Photoenergy, 7, 1-9 (2005). https://doi.org/10.1155/S1110662X05000012
  35. N. Rioja, S. Zorita, and F. J. Penas, Effect of water matrix on photocatalytic degradation and general kinetic modeling, Appl. Catal. B, 180, 330-335 (2016). https://doi.org/10.1016/j.apcatb.2015.06.038
  36. M. Makita and A. Harata, Photocatalytic decolorization of rhodamine B dye as a model of dissolved organic compounds: Influence of dissolved inorganic chloride salts in seawater of the Sea of Japan, Chem. Eng. Process., 47, 859-863 (2008). https://doi.org/10.1016/j.cep.2007.01.036
  37. C. Chen, W. Zhao, J. Li, and J. Zhao, Formation and identification of intermediates in visible-light-assisted photodegradation of sulforhodamine-B dye in aqueous $TiO_2$ dispersion, Environ. Sci. Technol., 36, 3604-3611 (2002). https://doi.org/10.1021/es0205434
  38. J. Zhuang, W. Dai, Q. Tian, Z. Li, L. Xie, J. Wang, and P. Liu, Photocatalytic degradation of RhB over $TiO_2$ bilayer films: effect of defects and their location, Langmuir, 26, 9686-9694 (2010). https://doi.org/10.1021/la100302m
  39. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, Synthesis and characterization of high efficiency and stable $Ag_3PO_4$/$TiO_2$ visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions, J. Mater. Chem., 22, 4050-4055 (2012). https://doi.org/10.1039/c2jm14410g
  40. C.-C. Yang, C.-L. Huang, T.-C. Cheng, and H.-T. Lai, Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics, Int. Biodeterior. Biodegrad., 102, 116-125 (2015). https://doi.org/10.1016/j.ibiod.2015.01.015
  41. R. Yuan, S. N. Ramjaun, Z. Wang, and J. Liu, Photocatalytic degradation and chlorination of azo dye in saline wastewater: kinetics and AOX formation, Chem. Eng. J., 192, 171-178 (2012). https://doi.org/10.1016/j.cej.2012.03.080
  42. H. Y. Chen, O. Zahra, and M. Bouchy, Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of $TiO_2$ by inorganic ions, J. Photochem. Photobiol. A, 108, 37-44 (1997). https://doi.org/10.1016/S1010-6030(96)04411-5
  43. A. Piscopo, D. Robert, and J. V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds. Part I. Effect on the benzamide and para-hydroxybenzoic acid in $TiO_2$ aqueous solution, Appl. Catal. B, 35, 117-124 (2001). https://doi.org/10.1016/S0926-3373(01)00244-2
  44. R. X. Yuan, Z. Wang, Y. Hu, B. Wang, and S. Gao, Probing the radical chemistry in UV/persulfate-based saline wastewater treatment: Kinetics modeling and byproducts identification, Chemosphere, 109, 106-112 (2014). https://doi.org/10.1016/j.chemosphere.2014.03.007
  45. J. Yan, K. Wang, H. Xu, J. Qian, W. Liu, X. Yang, and H. Li, Visible-light photocatalytic efficiencies and anti-photocorrosion behavior of CdS/graphene nanocomposite: Evaluation using methylene blue degradation, Chin. J. Catal., 34, 1876-1882 (2013). https://doi.org/10.1016/S1872-2067(12)60677-9