Effects of Edge Activator on the Droplet Size and Skin Permeation of Hydrated Liquid Crystalline Vesicles

Edge Activator가 수화 액정형 베시클의 입자크기와 피부 침투에 미치는 영향

  • Lee, Seo Young (Department of Applied Chemistry, Dongduk Women's University) ;
  • Lim, Yoon Mi (Department of Applied Chemistry, Dongduk Women's University) ;
  • Jin, Byung Suk (Department of Applied Chemistry, Dongduk Women's University)
  • 이서영 (동덕여자대학교 자연과학대학 응용화학과) ;
  • 임윤미 (동덕여자대학교 자연과학대학 응용화학과) ;
  • 진병석 (동덕여자대학교 자연과학대학 응용화학과)
  • Received : 2017.08.03
  • Accepted : 2017.10.10
  • Published : 2017.12.10


Hydrated liquid crystalline vesicles incorporating a edge activator, which confers flexibility to the vesicle membranes, were prepared and niacinamide was encapsulated in them. The formation of liquid crystalline phases and their thermal phase transitions were investigated by polarized optical microscopy and differential scanning calorimetry (DSC), respectively. Droplet sizes of the vesicles were reduced to several tens of nanometers by incorporating edge activators, such as sodium deoxycholate, lysolecithin, or polysorbate 80. The amount of niacinamide permeated into a pig skin increased greatly using the hydrated liquid crystalline vesicles compared to the case where niacinamide was applied in an aqueous solution state. The vesicles incorporating 10% sodium deoxycholate increased the amount of niacinamide permeated nearly four times. These results suggest that edge activators are effective in improving the skin permeability of vesicles.


Supported by : 동덕여자대학교


  1. D. Verma, S. Verma, G. Blume, and A. Fahr, Particle size of liposomes influences dermal delivery of substances into skin, Int. J. Pharm., 258, 141-151 (2003).
  2. M. Kirjavainen, A. Urtti, I. Jaaskelainen, T. Suhonen, P. Paronen, R. Valjakka-Koskela, J. Kiesvaara, and J. Monkkonen, Interaction of liposomes with human skin in vitro-the influence of lipid composition and structure, Biochim. Biophys. Acta, 1304, 179-189 (1996).
  3. M. Trotta, E. Peira, F. Debernardi, and M. Gallarate, Elastic liposomes for skin delivery of dipotassium glycyrrhizinate, Int. J. Pharm., 241, 319-327 (2002).
  4. M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Lipid vesicles for skin delivery of drugs: Reviewing three decades of research, Int J. Pharm., 332, 1-16 (2007).
  5. E. Touitou, N. Dayan, L. Bergelson, B. Godin, and M. Eliaz, Ethosomes-novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties, J. Control. Release, 65, 403-418 (2000).
  6. I. M. Aldulbaqi, Y. Darwis, N. A. K. Khan, R. A. Assi, and A. A. Khan, Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and cliNAal trials, Int. J. Nanomed., 11, 2279-2304 (2016).
  7. E. Touitou, B. Godin, and C. Weiss, Enhanced delivery of drugs into and across the skin by ethosomal carriers, Drug Dev. Res., 50, 406-415 (2000).<406::AID-DDR23>3.0.CO;2-M
  8. M. Bragagni, N. Mennini, F. Maestrelli, M. Cirri, and P. Mura, Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib, Drug Deliv., 19, 354-361 (2012).
  9. M.-I. Yeh, H.-C. Huang, J.-H. Liaw, M.-C. Huang, T.-H. Wu, K.-F. Huang, and F.-L. Hsu, Ethosomes in hair dye products as carriers of the major compounds of black tea extracts, Int. J. Dermatol., 52, 868-875 (2013).
  10. C. K. Song, P. Balakrishnan, C.-K. Shim, S.-J. Chung, S. Chong, and D.-D. Kim, A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/ in vivo evaluation, Colloids Surf. B, 92, 299-304 (2012).
  11. S. M. Lee, M. J. Choi, Y. M. Lee, and B. S. Jin, Preparation and characterization of ethosome containing hydrophobic flavonoid luteolin, Appl. Chem. Eng., 21, 40-45 (2010).
  12. Y. M. Lim, Y. K. Jun, S. Park, and B. S. Jin, Coencapsulation of L-ascorbic acid and $\alpha$-Tocopherol in ethosomes their properties, Appl. Chem. Eng., 25, 368-373 (2014).
  13. B. S. Jin, S. M. Lee, and K. H. Lee, A study on the factors affecting entrapment efficiency and particle size of ethosomes, Appl. Chem. Eng., 17, 138-143 (2006).
  14. N. Heldt, J. Zhao, S. Friberg, Z. Zhang, G. Slack, and Y. Li, Controlling the size of vesicles prepared from egg lecithin using a hydrotrope, Tetrahedron, 56, 6985-6990 (2000).
  15. G. El Maghraby, A. Willams, and B. Barry, Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes, Int. J. Pharm., 276, 143-161 (2004).
  16. S.-H. Tung, Y.-E. Huang, and S. R. Raghavan, A new reverse wormlike micellar system: Mixtures of bile aalt and lecithin in organic liquids, J. Am. Chem. Soc., 128, 5751-5756 (2006).
  17. D. H. Bae and J. S. Shin, Silicone Nanoemulsion stabilized with hydrogenated lecithin, Appl. Chem. Eng., 11, 522-528 (2000).
  18. J. Bhattacharjee, G. Verma, V. Aswal, A. A. Date, M. S. Nagarsenker, and P. Hassan, Tween 80 - Sodium deoxycholate mixed micelles: Structural characterization and application in doxorubicin delivery, J. Phys. Chem. B, 114, 16414-16421 (2010).
  19. M. N. Jones, The surface properties of phospholipid liposome systems and their characterization, Adv. Colloid Interface Sci., 54, 93-128 (1995).
  20. M. Jadupati, G. Amites, and N. A. Kumar, Transfersome: An opportunistic carrier for transdermal drug delivery system, Int. Res. J. Pharm., 3, 35-38 (2012).
  21. G. M. M. El Macghraby, A. C. Williams, and B. W. Barry, Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes, J. Pharm. Pharmacol., 53, 1311-1322 (2001).