DOI QR코드

DOI QR Code

Edge Activator가 수화 액정형 베시클의 입자크기와 피부 침투에 미치는 영향

Effects of Edge Activator on the Droplet Size and Skin Permeation of Hydrated Liquid Crystalline Vesicles

  • 이서영 (동덕여자대학교 자연과학대학 응용화학과) ;
  • 임윤미 (동덕여자대학교 자연과학대학 응용화학과) ;
  • 진병석 (동덕여자대학교 자연과학대학 응용화학과)
  • Lee, Seo Young (Department of Applied Chemistry, Dongduk Women's University) ;
  • Lim, Yoon Mi (Department of Applied Chemistry, Dongduk Women's University) ;
  • Jin, Byung Suk (Department of Applied Chemistry, Dongduk Women's University)
  • 투고 : 2017.08.03
  • 심사 : 2017.10.10
  • 발행 : 2017.12.10

초록

베시클 막을 유연하게 만드는 edge activator를 혼합하여 수화 액정형 베시클을 제조하고 niacinamide를 베시클 안에 포집시켰다. 제조 과정 중 액정 상 형성 및 액정의 열적 상전이 현상을 편광현미경과 시차주사 열량계(DSC)를 통해 살펴보았다. Sodium deoxycholate, lysolecithin, polysorbate 80 등의 edge activator를 첨가하면 수화 액정형 베시클 입자가 수십 나노 사이즈로 줄어들었다. 수화 액정형 베시클을 활용하여 niacinamide를 피부 침투시키면 수용액 상태로 도포했을 때보다 피부 침투된 niacinamide의 양이 크게 증가하는데, 10% sodium deoxycholate를 혼합한 베시클에서는 niacinamide 침투량이 4배 가까이 증가하였다. 이러한 결과로부터 edge activator를 베시클에 혼합하면 베시클의 피부 침투력이 향상됨을 알 수 있었다.

과제정보

연구 과제 주관 기관 : 동덕여자대학교

참고문헌

  1. D. Verma, S. Verma, G. Blume, and A. Fahr, Particle size of liposomes influences dermal delivery of substances into skin, Int. J. Pharm., 258, 141-151 (2003). https://doi.org/10.1016/S0378-5173(03)00183-2
  2. M. Kirjavainen, A. Urtti, I. Jaaskelainen, T. Suhonen, P. Paronen, R. Valjakka-Koskela, J. Kiesvaara, and J. Monkkonen, Interaction of liposomes with human skin in vitro-the influence of lipid composition and structure, Biochim. Biophys. Acta, 1304, 179-189 (1996). https://doi.org/10.1016/S0005-2760(96)00126-9
  3. M. Trotta, E. Peira, F. Debernardi, and M. Gallarate, Elastic liposomes for skin delivery of dipotassium glycyrrhizinate, Int. J. Pharm., 241, 319-327 (2002). https://doi.org/10.1016/S0378-5173(02)00266-1
  4. M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Lipid vesicles for skin delivery of drugs: Reviewing three decades of research, Int J. Pharm., 332, 1-16 (2007). https://doi.org/10.1016/j.ijpharm.2006.12.005
  5. E. Touitou, N. Dayan, L. Bergelson, B. Godin, and M. Eliaz, Ethosomes-novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties, J. Control. Release, 65, 403-418 (2000). https://doi.org/10.1016/S0168-3659(99)00222-9
  6. I. M. Aldulbaqi, Y. Darwis, N. A. K. Khan, R. A. Assi, and A. A. Khan, Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and cliNAal trials, Int. J. Nanomed., 11, 2279-2304 (2016).
  7. E. Touitou, B. Godin, and C. Weiss, Enhanced delivery of drugs into and across the skin by ethosomal carriers, Drug Dev. Res., 50, 406-415 (2000). https://doi.org/10.1002/1098-2299(200007/08)50:3/4<406::AID-DDR23>3.0.CO;2-M
  8. M. Bragagni, N. Mennini, F. Maestrelli, M. Cirri, and P. Mura, Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib, Drug Deliv., 19, 354-361 (2012). https://doi.org/10.3109/10717544.2012.724472
  9. M.-I. Yeh, H.-C. Huang, J.-H. Liaw, M.-C. Huang, T.-H. Wu, K.-F. Huang, and F.-L. Hsu, Ethosomes in hair dye products as carriers of the major compounds of black tea extracts, Int. J. Dermatol., 52, 868-875 (2013). https://doi.org/10.1111/ijd.12014
  10. C. K. Song, P. Balakrishnan, C.-K. Shim, S.-J. Chung, S. Chong, and D.-D. Kim, A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/ in vivo evaluation, Colloids Surf. B, 92, 299-304 (2012). https://doi.org/10.1016/j.colsurfb.2011.12.004
  11. S. M. Lee, M. J. Choi, Y. M. Lee, and B. S. Jin, Preparation and characterization of ethosome containing hydrophobic flavonoid luteolin, Appl. Chem. Eng., 21, 40-45 (2010).
  12. Y. M. Lim, Y. K. Jun, S. Park, and B. S. Jin, Coencapsulation of L-ascorbic acid and $\alpha$-Tocopherol in ethosomes their properties, Appl. Chem. Eng., 25, 368-373 (2014). https://doi.org/10.14478/ace.2014.1041
  13. B. S. Jin, S. M. Lee, and K. H. Lee, A study on the factors affecting entrapment efficiency and particle size of ethosomes, Appl. Chem. Eng., 17, 138-143 (2006).
  14. N. Heldt, J. Zhao, S. Friberg, Z. Zhang, G. Slack, and Y. Li, Controlling the size of vesicles prepared from egg lecithin using a hydrotrope, Tetrahedron, 56, 6985-6990 (2000). https://doi.org/10.1016/S0040-4020(00)00520-2
  15. G. El Maghraby, A. Willams, and B. Barry, Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes, Int. J. Pharm., 276, 143-161 (2004). https://doi.org/10.1016/j.ijpharm.2004.02.024
  16. S.-H. Tung, Y.-E. Huang, and S. R. Raghavan, A new reverse wormlike micellar system: Mixtures of bile aalt and lecithin in organic liquids, J. Am. Chem. Soc., 128, 5751-5756 (2006). https://doi.org/10.1021/ja0583766
  17. D. H. Bae and J. S. Shin, Silicone Nanoemulsion stabilized with hydrogenated lecithin, Appl. Chem. Eng., 11, 522-528 (2000).
  18. J. Bhattacharjee, G. Verma, V. Aswal, A. A. Date, M. S. Nagarsenker, and P. Hassan, Tween 80 - Sodium deoxycholate mixed micelles: Structural characterization and application in doxorubicin delivery, J. Phys. Chem. B, 114, 16414-16421 (2010). https://doi.org/10.1021/jp108225r
  19. M. N. Jones, The surface properties of phospholipid liposome systems and their characterization, Adv. Colloid Interface Sci., 54, 93-128 (1995). https://doi.org/10.1016/0001-8686(94)00223-Y
  20. M. Jadupati, G. Amites, and N. A. Kumar, Transfersome: An opportunistic carrier for transdermal drug delivery system, Int. Res. J. Pharm., 3, 35-38 (2012).
  21. G. M. M. El Macghraby, A. C. Williams, and B. W. Barry, Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes, J. Pharm. Pharmacol., 53, 1311-1322 (2001). https://doi.org/10.1211/0022357011777800