Investigation of Liquid Phase Ammonia Removal Efficiency by Chemo-biological Process of Zeolites and Klebsiella pneumonia sp.

제올라이트와 Klebsiella pneumonia sp.을 이용한 화학-생물학적 액상 암모니아의 제거 효율 연구

  • Park, Min Seob (Department of Environmental Engineering, Ajou University) ;
  • Choi, Kwon-Young (Department of Environmental Engineering, Ajou University)
  • 박민섭 (아주대학교 환경안전공학과) ;
  • 최권영 (아주대학교 환경안전공학과)
  • Received : 2017.09.22
  • Accepted : 2017.10.16
  • Published : 2017.12.10


Ammonia is a useful substance which is widely used in various industries. It is generally released by the decomposition of agricultural wastes and known to have toxic effects on human beings. Due to the common usage, it is possible to cause water pollution through either direct or indirect leakage. Such cases, it is preferable to use the adsorption capacity of zeolite to rapidly remove ammonium ions, but it is not sufficiently removed by the adsorption only. In this paper, the removal efficiency of ammonium ion through both the adsorption capacities of commercial synthetic zeolites and the biological mechanism of microorganisms were compared. In addition, microorganisms were immobilized on the zeolite in order to enhance the removal efficiency by applying a chemo-biological process. As a result, the standard commercial zeolite showed 67~81% of the removal efficiency in 2~4 hours at a 100 ppm concentration of ammonium, whereas the selected microorganism Klebsiella pneumoniae subsp. Pneumoniae showed up to 97% within 8 hours. When the microorganism was immobilized on the zeolite, the highest removal efficiency of approximately 98.5% were observed within 8 hours.


Grant : 산업현장의 독성가스 누출사고 피해 저감을 위한 응급처리 기술 개발

Supported by : 에너지기술연구원


  1. W. F. Hu, W. Lo, H. Chua, S. N. Sin, and P. H. F. Yu, Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong, Environ. Int., 26, 369-375 (2001).
  2. D. J. Randall and T. K. N. Tsui, Ammonia toxicity in fish, Mar. Pollut. Bull., 45, 17-23 (2002).
  3. J. O. Clemmesen, F. S. Larsen, J. Kondrup, B. A. Hansen, and P. Ott, Cerebral herniation in patients with acute E liver failure is correlated with arterial ammonia concentration, Hepatology, 29, 648-653 (1999).
  4. W. T. Mook, M. H. Chakrabarti, M. K. Aroua, G. M. A. Khan, B. S. Ali, M. S. Islam, and M. A. A. Hassan, Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review, Desalination, 285, 1-13 (2012).
  5. S. K. Marttinen, R. H. Kettunen, K. M. Sormunen, R. M. Soimasuo, and J. A. Rintala, Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates, Chemosphere., 46, 851-858 (2002).
  6. T. C. Jorgensen and L. R. Weatherley, Ammonia removal from wastewater by ion exchange in the presence of organic contaminants, Water Res., 37, 1723-1728 (2003).
  7. G. B. Nuernberg, M. A. Moreira, P. R. Ernani, J. A. Almeida, and T. M. Maciel, Efficiency of basalt zeolite and Cuban zeolite to adsorb ammonia released from poultry litter, J. Environ. Manage., 183, 667-672 (2016).
  8. Y. Ding and M. Sartaj, Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology, J. Environ. Chem. Eng., 3, 807-814 (2015).
  9. S. Wang, Y. Peng, B. Ma, S. Wang, and G. Zhu, Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked, Water Res., 84, 66-75 (2015).
  10. Y. Ma, D. Hira, Z. Li, C. Chen, and K. Furukawa, Nitrogen removal performance of a hybrid anammox reactor, Bioresour. Technol., 102, 6650-6656 (2011).
  11. L. Zhang, W. Wu, and J. Wang, Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel, J. Environ. Sci., 19, 1293-1297 (2007).
  12. W. Martens-Habbena, P. M. Berube, H. Urakawa, J. R. de la Torre, and D. A. Stahl, Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria, Nature, 461, 976-979 (2009).
  13. R. Hatzenpichler, Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea, Appl. Environ. Microbiol., 78, 7501-7510 (2012).
  14. C. Wuchter, B Abbas, M. J. L. Coolen, L Herfort, J. van Bleijswijk, P. Timmers, M. Strous, E. Teira, G. J. Herndl, J. J. Middelburg, S. Schouten, and J. S. S. Damste, Archaeal nitrification in the ocean, Proc. Natl. Acad. Sci. U.S.A., 103, 12317-12322 (2006).
  15. S. Leininger, T. Urich, M. Schloter, L. Schwar, J. Qi, G. W. Nicol, J. I. Prosser, S. C. Schuster, and C. Schleper, Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, 442, 806-809 (2006).
  16. J. Ollivier, N. Wanat, A. Austruy, A. Hitmi, E. Joussein, G. Welzi, J. C. Munch, and M. Schloter, Abundance and diversity of ammonia- oxidizing prokaryotes in the root-rhizosphere complex of Miscanthus x giganteus grown in heavy metal-contaminated soils, Microb. Ecol., 64, 1038-1046 (2012).
  17. C. R. Murthy and L. Hertz, Acute effect of ammonia on branched-chain amino acid oxidation and incorporation into proteins in astrocytes and in neurons in primary cultures, J. Neurochem., 49, 735-741 (1987).
  18. L. K. Bak, A. Schousboe, and H. S. Waagepetersen, The glutamate/ GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer, J. Neurochem., 98, 641-653 (2006).
  19. H. G. Preuss, Ammonia production from glutamine and glutamate in isolated dog renal tubules, Am. J. Physiol., 220, 54-58 (1971).
  20. Y. J. Kim, M. Yoshizawa, S. Takenaka, S. Murakami, and K. Aoki, Ammonia assimilation in Klebsiella pneumoniae F-5-2 that can utilize ammonium and nitrate ions simultaneously: purification and characterization of glutamate dehydrogenase and glutamine synthetase, J. Biosci. Bioeng., 93, 584-588 (2002).
  21. B. Zhao, Y. L. He, J. Hughes, and X. F. Zhang, Heterotrophic nitrogen removal by a newly isolated Acinetobacter calcoaceticus HNR, Bioresour. Technol., 101, 5194-5200 (2010).
  22. M. G. Fernandez-Lopez, C. Popoca-Ursino, E. Sanchez-Salinas, R. Tinoco-Valencia, J. L. Folch-Mallol, E. Dantan-Gonzalez, and M. Laura Ortiz-Hemandez, Enhancing methyl parathion degradation by the immobilization of Burkholderia sp. isolated from agricultural soils, Microbiologyopen, 6, 1-12 (2017).
  23. Y. Ding and M. Sartaj, Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology, J. Environ. Chem. Eng., 3, 807-814 (2015).
  24. W. C. van Heeswijk, H. V. Westerhoff, and F. C. Boogerd, Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective, Microbiol. Mol. Biol. Rev., 77, 628-695 (2013).
  25. L. Reitzer, Nitrogen assimilation and global regulation in Escherichia coli, Annu. Rev. Microbiol., 57, 155-176 (2003).
  26. T. E. Shehata and A. G. Marr, Effect of nutrient concentration on the growth of Escherichia coli, J. Bacteriol., 107, 210-216 (1971).
  27. U. Lendenmann, M. Snozzi, and T. Egli, Growth kinetics of Escherichia coli with galactose and several other sugars in carbon- limited chemostat culture, Can. J. Microbiol., 46, 72-80 (2000).
  28. M. Becker, L. De Cola, and A. Studer, Site-specific immobilization of proteins at zeolite L crystals by nitroxide exchange reactions, Chem. Commun. (Camb.), 47, 3392-3394 (2011).
  29. Y. Watanabe, T. Ikoma, H. Yamada, Y. Suetsugu, Y Komatsu, G. W. Stevens, Y. Moriyoshi, and J. Tanaka, Novel long-term immobilization method for radioactive iodine-129 using a zeolite/apatite composite sintered body, ACS Appl. Mater. Interfaces, 1, 1579-1584 (2009).