DOI QR코드

DOI QR Code

Comparison of Antioxidant and Matrix Metalloproteinases Inhibitory Effects of Sorbus commixta Twig Extracts before and after Fermentation with Lactobacillus pentosus

Lactobacillus pentosus에 의한 발효 전후 마가목 가지 추출물의 항산화 활성 및 Matrix Metalloproteinases 발현 억제 효과

  • Park, Young Min (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, So Hyun (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Cha, Mi Yeon (Life Science Research Institute, GFC Co. Ltd.) ;
  • Kang, Hee Cheol (Life Science Research Institute, GFC Co. Ltd.) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 박영민 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박소현 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 차미연 ((주)지에프씨 생명과학연구원) ;
  • 강희철 ((주)지에프씨 생명과학연구원) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2017.09.13
  • Accepted : 2017.10.23
  • Published : 2017.12.10

Abstract

In this study, we investigated antioxidative and matrix metalloproteinases (MMPs) inhibitory effects of Sorbus commixta twig extracts and fermented extracts with Lactobacillus pentosus and analyzed active ingredients. The free radical scavenging activity ($FSC_{50}$) of non-fermented and fermented extracts of S. commixta twig' were 41.04 and $58.2{\mu}g/mL$, respectively. In the $Fe^{3+}-EDTA/H_2O_2$ system, the active oxygen scavenging activity ($OSC_{50}$) was 2.6 and $3.0{\mu}g/mL$, respectively. In the dermal fibroblasts, the intracellular reactive oxygen species (ROS) scavenging activity was 35.3% for non-fermented extract and 40.2% for fermented extracts at the concentration of $10{\mu}g/mL$. Also at the same concentration, the expression of MMPs (MMP-1, -2, -3) by western blot was 68.3, 35.0 and 24.2%, respectively for non-fermented extracts and 84.3, 70.5 and 69.2% for fermented extracts. TLC, HPLC, and LC/ESI-MS/MS were used for measuring the changes in the components of the extract before and after fermentation. As a result, caffeic acid, (-)-epicatechin, isoquercitrin, and quercetin were identified. From the results, S. commixta twig fermented extracts by L. pentosus showed greater ROS scavenging activity and inhibitory effects on MMPs expression than those of using non-fermented extracts. Therefore, it is suggested that S. commixta twig fermented extracts can be used as an anti-aging cosmetic material.

Acknowledgement

Supported by : 중소기업청

References

  1. H. S. Lee and S. H. Kim, Safety evaluation of black garlic extract for development of cosmeceutical ingredients-skin irritation and sensitization studies, J. Korean Soc. Food Sci. Nutr., 39, 1213-1219 (2010). https://doi.org/10.3746/jkfn.2010.39.8.1213
  2. B. A. Gilchrest, Skin aging and photoaging: an overview, J. Am. Acad. Dermatol., 21, 610-613 (1989). https://doi.org/10.1016/S0190-9622(89)70227-9
  3. M. A. Zaid, F. Afaq, D. N. Syed, M. Dreher, and H. Mukhtar, Inhibition of UVB‐mediated oxidative stress and markers of photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx, Photochem. Photobiol., 83, 882-888 (2007). https://doi.org/10.1111/j.1751-1097.2007.00157.x
  4. A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16-29 (2015). https://doi.org/10.1016/j.arr.2015.01.001
  5. M. Kim, Y. G. Park, H. J. Lee, S. J. Lim, and C. W. Nho, Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NF-${\kappa}B$ and activation of AMPK/Nrf2 in Hacat cells and human dermal fibroblasts, J. Agric. Food Chem., 63, 5428-5438 (2015). https://doi.org/10.1021/acs.jafc.5b00467
  6. G. L. Fisher, H. S. Talwar, J. Lin, P. Lin, F. McPhillips, Z. Wang, X. Li, Y. Wan, S. Kang, and J. J. Voorhees, Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo, J. Clin. Invest., 101, 1432-1440 (1998). https://doi.org/10.1172/JCI2153
  7. G. J. Fisher, S. C. Datta, H. S. Talwar, Z. Q. Wang, J. Varani, S. Kang, and J. J. Voorhees, Molecular basis of sun-induced premature skin ageing and retinoid antagonism, Nature, 379, 335-339 (1996). https://doi.org/10.1038/379335a0
  8. L. Rittie and G. J. Fisher, UV-light-induced signal cascades and skin aging, Ageing Res. Rev., 1, 705-720 (2002). https://doi.org/10.1016/S1568-1637(02)00024-7
  9. S. G. Park, S. N. Kim, J. C. Lee, H. S. Kim, Y. J. Kim, B. G. Lee, and I. S. Jang, Anti-aging effect on skin with Jaeum-Dan (JED), Korean J. Herbology., 19, 67-76 (2004).
  10. A. R. Im, J. H. Song, M. Y. Lee, S. H. Yeon, K. A. Um, and S. Chae, Anti-wrinkle effects of fermented and non-fermented cyclopia intermedia in hairless mice, BMC Complement. Altern. Med., 14, 424-429 (2014). https://doi.org/10.1186/1472-6882-14-424
  11. C. C. Tsai, C. F. Chan, W. Y. Huang, J. S. Lin, P. Chan, H. Y. Liu, and Y. S. Lin, Applications of Lactobacillus rhamnosus spent culture supernatant in cosmetic antioxidation, whitening and moisture retention applications, Molecules, 18, 14161-14171 (2013). https://doi.org/10.3390/molecules181114161
  12. Y. Okabe, T. Shimazu, and H. Tanimoto, Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women, J. Sci. Food Agric., 91, 658-663 (2011). https://doi.org/10.1002/jsfa.4228
  13. C. G. Schmidt, L. M. Goncalves, L. Prietto, H. S. Hackbart, and E. B. Furlong, Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae, Food Chem., 146, 371-377 (2014). https://doi.org/10.1016/j.foodchem.2013.09.101
  14. B. G. Park, H. J. Jung, Y. W. Cho, H. W. Lim, and C. J. Lim, Potentiation of antioxidative and anti-inflammatory properties of cultured wild ginseng root extract through probiotic fermentation, J. Pharm. Pharmacol., 65, 457-464 (2013). https://doi.org/10.1111/jphp.12004
  15. H. J. Yang, E. H. Kim, J. O. Park, J. E. Kim, and S. N. Park, Antioxidative activity and component analysis of fermented Melissa officinalis extracts, J. Soc. Cosmet. Sci. Korea, 35, 47-55 (2009).
  16. Y. J. Ahn, B. R. Won, M. K. Kang, J. H. Kim, and S. N. Park, Antioxidant activity and component analysis of fermented Lavandula angustifolia extracts, J. Soc. Cosmet. Sci. Korea, 35, 125-134 (2009).
  17. T. Yu, Y. J. Lee, H. J. Jang, A. R. Kim, S. Y. Hong, T. W. Kim, M. Y. K, J. H. Lee, Y. G. Lee, and J. Y. Cho, Antiinflammatory activity of Sorbus commixta water extract and its molecular inhibitory mechanism, J. Ethnopharmacol., 134, 493-500 (2011). https://doi.org/10.1016/j.jep.2010.12.032
  18. S. H. Kim, Y. S. Jang, H. G. Chung, M. S. Choi, and S. C. Kim, Selection of superior trees for larger fruit and high productivity in Sorbus commixta Hedl, Korean J. Plant. Res., 6, 120-128 (2003).
  19. L. R. Bhatt, M. S. Bae, B. M. Kim, G. S. Oh, and K. Y. Chai, A chalcone glycoside from the fruits of Sorbus commixta Hedl, Molecules, 14, 5323-5327 (2009). https://doi.org/10.3390/molecules14125323
  20. M. K. Na, R. B. An, S. M. Lee, B. S. Min, Y. H. Kim, K. H. Bae, and S. S. Kang, Antioxidant compounds from the stem bark of Sorbus commixta, Nat. Prod. Sci., 8, 26-29 (2002).
  21. G. N. Lim, M. A Park, and S. N. Park, Antioxidative and antiaging effects of Sorbus commixta twig extracts, J. Korean Oil Chem. Soc., 28, 482-490 (2011).
  22. B. U. Ridwan, C. J. M. Koning, M. G. H. Besselink, H. M. Timmerman, E. C. Brouwer, J. Verhoef, H. G. Gooszen, and L. M. A. Akkermans, Antimicrobial activity of a multispecies probiotic (Ecologic 641) against pathogens isolated from infected pancreatic necrosis, Lett. Appl. Microbiol., 46, 61-67 (2008).
  23. L. H. Quan, L. Q. Cheng, H. B. Kim, J. H. Kim, N. R. Son, S. Y. Kim, H. O. Jin, and D. C. Yang, Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from Kimchi, J. Ginseng Res., 34, 288-295 (2010). https://doi.org/10.5142/jgr.2010.34.4.288
  24. Y. H. Pyo, T. C. Lee, and Y. C. Lee, Enrichment of bioactive isoflavones in soymilk fermented with $\beta$-glucosidase-producing lactic acid bacteria, Food Res. Int., 38, 551-559 (2005). https://doi.org/10.1016/j.foodres.2004.11.008
  25. J. W. Min, H. J. Kim, K. S. Joo, and H. C. Kang, Isolation of Stenotrophomonas rhizopilae strain GFC09 with ginsenoside converting activity and anti-wrinkle effects of converted ginsenosides, J. Soc. Cosmet. Sci. Korea, 41, 375-382 (2007).
  26. S. H. Kim, J. W. Min, L. H. Quan, S. Lee, D. U. Yang, and D. C. Yang, Enzymatic trnasformation of ginsenoside Rb1 by Lactobacillus pentosus strain 6105 from Kimchi, J. Ginseng. Res., 36, 291-297 (2012). https://doi.org/10.5142/jgr.2012.36.3.291
  27. S. H. Xuan, Y. M. Park, J. H. Ha, Y. J. Jeong, and S. N. Park, The effect of dehydroglyasperin C on UVB-mediated MMPs expression in human HaCaT cells, Pharmacol. Rep., Doi: 10.1016/ j.pharep.2017.05.012 (2017). https://doi.org/10.1016/j.pharep.2017.05.012