DOI QR코드

DOI QR Code

New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect

개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법

  • Nguyen, Dinh Cung Tien (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Cho, Kwang Youn (Korea Institutes of Ceramic Engineering and Technology) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2017.05.15
  • Accepted : 2017.10.23
  • Published : 2017.12.10

Abstract

A novel material, $Bi_2WO_6-GO-TiO_2$ composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of $Bi_2WO_6$ and $TiO_2$ nanoparticles onto graphene sheets was achieved. The obtained $Bi_2WO_{6-GO-TiO2}$ composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The $Bi_2WO_6$ nanoparticle showed an irregular dark-square block nanoplate shape, while $TiO_2$ nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the $Bi_2WO_6-GO-TiO_2$ composite showed good decolorization activity with MB solution under visible light. The $Bi_2WO_6-GO-TiO_2$ composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir-Hinshelwood model and a band theory.

References

  1. C. Hu, T. Lu, and F. Chen, A brief review of graphene-metal oxide composites synthesis and applications in photocatalysis, J. Chin. Adv. Mater. Soc., 1, 21-39 (2013). https://doi.org/10.1080/22243682.2013.771917
  2. L. Zhu, Z. D. Meng, M. L. Chen, F. J. Zhang, J. G. Choi, J. Y. Park, and W. C. Oh, Photodegradation of MB solution by the metal (Fe, Ni and Co) containing AC/$TiO_2$ photocatalyst under the UV irradiation, J. Photo. Sci., 1, 69 (2010).
  3. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4, 380-386 (2010). https://doi.org/10.1021/nn901221k
  4. S. R. Kim, M. K. Parvez, and M. Chhowalla, UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells, Chem. Phys. Lett., 483, 124-127 (2009). https://doi.org/10.1016/j.cplett.2009.10.066
  5. W. Low and V. Boonamnuayvitaya, Enhancing the photocatalytic activity of $TiO_2$ co-doping of graphene-$Fe^{3+}$ ions for formaldehyde removal, J. Environ. Manage., 127, 142-149 (2013). https://doi.org/10.1016/j.jenvman.2013.04.029
  6. H.-I. Kim, G.-H. Moon, D. Monllor-Satoca, Y. Park, and W. Choi, Solar photoconversion using graphene/$TiO_2$ composites: Nanographene shell on $TiO_2$ core versus $TiO_2$ nanoparticles on graphene sheet, J. Phys. Chem. C, 116(1), 1535-1543 (2012). https://doi.org/10.1021/jp209035e
  7. D. Zhao, G. Sheng, C. Chen, and X. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on $graphene@TiO_2$ dyade structure, Appl. Catal. B, 111-112, 303-308 (2012). https://doi.org/10.1016/j.apcatb.2011.10.012
  8. L. Karimi, M. E. Yazdanshenas, R. Khajavi, A. Rashidi, and M. Mirjalili, Using $graphene/TiO_2$ nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity, Cellulose, 21, 3813-3827 (2014). https://doi.org/10.1007/s10570-014-0385-1
  9. C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.-H. Hong, and D.-H. Min, Biomedical applications of graphene and graphene oxide, Acc. Chem. Res., 46(10), 2211-2224 (2013). https://doi.org/10.1021/ar300159f
  10. Y. Kikuchia, K. Sunadaa, T. Iyodaa, K. Hashimoto, and A. Fujishimaa, Photocatalytic bactericidal effect of $TiO_2$ thin films: dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol. A, 106, 51-56 (1997). https://doi.org/10.1016/S1010-6030(97)00038-5
  11. Z. Zhang, W. Wang, M. Shang, and W. Yin, Low-temperature combustion synthesis of $Bi_2WO_6$ nanoparticles as a visible-lightdriven photocatalyst, J. Hazard. Mater., 177, 1013-1018 (2010). https://doi.org/10.1016/j.jhazmat.2010.01.020
  12. J. Ren, W. Wang, L. Zhang, J. Chang, and S. P. Hu, Photocatalytic inactivation of bacteria by photocatalyst $Bi_2WO_6$ under visible light, Catal. Commun., 10, 1940-1943 (2009). https://doi.org/10.1016/j.catcom.2009.07.006
  13. Z. Cui, D. Zeng, T. Tang, J. Liu, and C. Xie, Enhanced visible light photocatalytic activity of QDS modified $Bi_2WO_6$ nanostructures, Catal. Commun., 11, 1054-1057 (2010). https://doi.org/10.1016/j.catcom.2010.05.010
  14. J. Ren, W. Wang, S. Sun, L. Zhang, and J. Chang, Enhanced photocatalytic activity of $Bi_2WO_6$ loaded with Ag nanoparticles under visible light irradiation, Appl. Catal. B, 92, 50-55 (2009). https://doi.org/10.1016/j.apcatb.2009.07.022
  15. Y. Zhang, Y. Zhang, L. Fei, X. Jiang, C. Pan, and Y. Wang, Engineering nanostructured $Bi_2WO_6$-$TiO_2$ toward effective utilization of natural light in photocatalysis, J. Am. Chem. Soc., 94, 4157-4161 (2011).
  16. Q. C. Xu, D. V. Wellia, Y. H. Ng, R. Amal, and T. T. Y. Tan, Synthesis of porous and visible-light absorbing $Bi_2WO_6$/$TiO_2$ heterojunction films with improved photoelectrochemical and photocatalytic performances, J. Phys. Chem. C, 115(15), 7419-7428 (2011). https://doi.org/10.1021/jp1090137
  17. F. Zhou and Y. Zhu, Significant photocatalytic enhancement in methylene blue degradation of $Bi_2WO_6$ photocatalysts via graphene hybridization, J. Adv. Ceram., 1(1), 72-78 (2012). https://doi.org/10.1007/s40145-012-0008-y
  18. H. Fu, L. Zhang, W. Yao, and Y. Zhu, Photocatalytic properties of nanosized $Bi_2WO_6$ catalysts synthesized via a hydrothermal process, Appl. Catal. B, 66, 100-110 (2006). https://doi.org/10.1016/j.apcatb.2006.02.022
  19. Y. Zhang, L. Fei, X. Jiang, C. Pan, and Y. Wang, Engineering nanostructured $Bi_2WO_6$-$TiO_2$ toward effective utilization of natural light in photocatalysis, J. Am. Ceram. Soc., 94, 4157-4161 (2011). https://doi.org/10.1111/j.1551-2916.2011.04905.x
  20. Y.-L. Min, K. Zhang, Y.-C. Chen, and Y.-G. Zhang, Enhanced photocatalytic performance of $Bi_2WO_6$ by graphene supporter as charge transfer channel, Sep. Purif. Technol., 86, 98-105 (2012). https://doi.org/10.1016/j.seppur.2011.10.025
  21. Z. Sun, J. Guo, S. Zhu, L. Mao, J. Ma, and D. Zhang, A high-performance $Bi_2WO_6$-graphene photocatalyst for the visible light-induced $H_2$ and $O_2$ generation, Nanoscale, 6, 2186-2193 (2014). https://doi.org/10.1039/C3NR05249D
  22. C. G. Silva and J. L. Faria, Photocatalytic oxidation of benzen derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a $TiO_2$ matrix, Appl. Catal. B, 101, 81-89 (2010). https://doi.org/10.1016/j.apcatb.2010.09.010
  23. D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, Synthesis of frost-like CuO combined graphene-$TiO_2$ by self-assembly method and its high photocatalytic performance, Appl. Surf. Sci., 412, 252-261 (2017). https://doi.org/10.1016/j.apsusc.2017.03.248
  24. J. Yang, X. Wang, X. Zhao, J. Dai, and S. Mo, Synthesis of uniform $Bi_2WO_6$-reduced graphene oxide nanocomposites with significantly enhanced photocatalytic reduction activity, J. Phys. Chem., 119(6), 3068-3078 (2015).
  25. Y. Li, X. Li, and J. Li, Photocatalytic degradation of methyl orange by $TiO_2$-coated activated carbon and kinetic study, Water Res., 40, 1119-1126 (2006). https://doi.org/10.1016/j.watres.2005.12.042
  26. E. Gao, W. Wang, M. Shang, and J. Xu, Synthesis and enhanced photocatalytic performance of graphene-$Bi_2WO_6$ composite, Phys. Chem. Chem. Phys., 13, 2887-2893 (2011). https://doi.org/10.1039/C0CP01749C
  27. F. Dong, Z. Y. Wang, Y. J. Sun, W. K. Ho, and H. D. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, J. Colloid Interface Sci., 401, 70-79 (2013). https://doi.org/10.1016/j.jcis.2013.03.034
  28. T. D. Nguyen-Phan, V. H. Pham, E. W. Shin, H. D. Pham, S. Kim, J. S. Chung, and S. H. Hur, The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/ graphene oxide composites, Chem. Eng. J., 170, 226-232 (2011). https://doi.org/10.1016/j.cej.2011.03.060
  29. D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, Synthesis of mesoporous $SiO_2$/$Cu_2O$-graphene nanocomposites and their highly efficien photocatalytic performance for dye pollutants. RSC Adv., 7, 29284-29294 (2017). https://doi.org/10.1039/C7RA03526H
  30. S. Min and G. Lu, Sites for High efficient photocatalytic hydrogen evolution on a limited-layered $MoS_2$ cocatalyst confined on graphene sheets-The role of graphene, J. Phys. Chem. C, 116(48), 25415-25424 (2012). https://doi.org/10.1021/jp3093786
  31. J. P. Zou, J. Ma, J. M. Luo, J. Yu, J. He, Y. Meng, and X. B. Luo, Fabrication of novel heterostructured few layered WS2-$Bi_2WO_6$/$Bi_{3.84}W_{0.16}O_{6.24}$ composites with enhanced photocatalytic performance, Appl. Catal. B, 179, 220-228 (2015). https://doi.org/10.1016/j.apcatb.2015.05.031
  32. G. Colon, S. Murcia Lopez, M. C. Hidalgoa, and J. A. Nvioa, Sunlight highly photoactive $Bi_2WO_6$-$TiO_2$ heterostructures for rhodamine B degradation, Chem. Commun., 46, 4809-4811 (2016).
  33. D. C. T. Nguyen, K. Y. Cho, and W. C. Oh, A facile route to synthesize ternary $Cu_2O$ quantum dot/graphene-$TiO_2$ nanocomposites with an improved photocatalytic effect, Fullerenes, Nanotubes and Carbon Nanostructures DOI: 10.1080/1536383X.2017.1344648 (2017). https://doi.org/10.1080/1536383X.2017.134464