Partial Oxidation of Methane to Syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) Catalysts

M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) 촉매상에서 합성가스 제조를 위한 메탄의 부분산화반응

  • Seo, Ho Joon (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Kim, Yong Sung (Korea BASF Co.)
  • Received : 2017.09.18
  • Accepted : 2017.11.06
  • Published : 2017.12.10


M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts were prepared for the partial oxidation of methane (POM) to syngas. The catalysts were characterized by BET, TEM, and XPS. The BET-specific surface area and average pore size for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) were 538.8, 504.3, and $447.3m^2/g$ and 6.4, 6.8, and 7.1 nm, respectively. TEM results showed that the mesoporous hexagonol structure was formed for SBA-15, while the homogeneous dispersion of Ni and Ce particles on the surface was formed for Ce(10)-Ni(5)/SBA-15 caused by the confinment effect of SBA-15. XPS data confirmed that $Ce^{4+}$ and $Ce^{3+}$ on the surface catalyst have two oxidation states due to the lattice oxygen species ($O^{2-}$, $O^-$). The yields of POM to syngas over Ce(10)-Ni(5)/SBA-15 were 52.9% $H_2$ and 21.7% CO at 1 atm, 973 K, $CH_4/O_2=2$, $GHSV=1.08{\times}10^5mL/g_{cat.}{\cdot}h$, and these values were kept constant even after 75 h on streams. The same tendency of syngas yields was observed for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm). These results confirm that the redox reaction of promoters including Ce, Nd, and Sm enhanced the stability and yield of catalysts.


  1. R. Horn and R. Schlogl, Methane activation by heterogeneous catalysis, Catal. Lett., 145, 23-39 (1915).
  2. H. J. Seo, U. I. Kang, and O. Y. Kwon, Characterization of Pd impregnated on metal/silica-pillared H-keyaites (M-SPK, M=Ti, Zr) catalysts for partial oxidation of methane to hydrogen, J. Ind. Eng. Chem., 20, 1332-1337 (2014).
  3. W. Taifan and J. Baltrusaitis, $CH_4$ conversion to value added products : potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B, 198, 525-547 (2016).
  4. M. Gharlbi, F. T. Zangeneh, F. Yaripour, and S. Sahebdelfar, Nanocatalysts for conversion of natural gas to liquid fuels and petrochemical feedstocks, Appl. Catal. B, 443-444, 8-26 (2012).
  5. P. Tang, Q. Zhu, Z. Wu, and D. Ma, Methane activation: The past and future, Energy Environ. Sci., 7, 2580-2591 (2014).
  6. H. Tian, X. Li, L. Zeng, and J. Gong, Recent advances on the design of group VIII base-metal catalysts with encapsulated structures, ACS Catal., 5, 4959-4977 (2015).
  7. S. Zhang, S. Muratsugu, N. Ishiguro, and M. Tada, Ceria-doped syn catalysts for dry reforming of methane, ACS Catal., 3, 1855-1864 (2013).
  8. J. M. M. de la Hoz and P. B. Balbuena, Small-molecule activation driven by confinement effects, ACS Catal., 5, 215-224 (2015).
  9. W. Cai, J. Yu, C. Anand, A. Vinu, and M. Jaroniec, Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties, Chem. Mater., 23, 1147-1157 (2011).
  10. Z. Wu, Q. Li, D. Feng, P. A. Webley, and D. Zhao, Ordered mesoporous crystalline ${\gamma}$-$Al_2O_3$ with variable architecture and porosity from a single hard template, J. Am. Chem. Soc., 132, 12042-12050 (2010).
  11. Q. Yuan, A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang, W. T. Duan, H. C. Lin, and C. H. Yun, Facile synthesis for ordered mesoporous ${\gamma}$-aluminas with high themal stability, J. Am. Chem. Soc., 130, 3465-3472 (2008).
  12. N. Wang, Huang, K. Shen, L. Huang, X. Yu, W. Qian, and W. Chu, Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal., 3, 1638-1651 (2013).
  13. H. Liu, Y. Li, H. Wu, W. Yang, and D. He, Effect of Nd, Ce, La modification on catalytic performance of Ni/SBA-15 catalyst in $CO_2$ reformig of $CH_4$, Chin. J. Catal., 35, 1520-1528 (2014).
  14. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120, 6024-6036 (1998).
  15. L. Xu, W. Mi, and Q. Su, Hydrogen production through diesel steam reforming over rare-earth promoted Ni/${\gamma}$-$Al_2O_3$ catalysts, J. Nat. Gas Chem., 20, 287-293 (2011).
  16. X. P. Dai, R. J. Li, C. C. Yu, and Z. P. Hao, Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using $AFeO_3$ (A=La, Nd, Eu) perovskite-type oxides as oxygen storage, J. Phys. Chem. B, 110, 22525-22531 (2006).
  17. W. D. Zhang, B. S. Liu, Y. P. Zhan, and Y. L. Tian, Syngas production via $CO_2$ reforming of methane over $Sm_2O_3-La_2O_3$- supported Ni catalyst, Ind. Eng. Chem. Res., 48, 7498-7504 (2009).
  18. N. Wang, W. Chu, T. Zhang, and X. S. Zhao, Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas, Int. J. Hydrogen Energy, 37, 19-30 (2012).
  19. A. Davidson, J. F. Tempere, M. Che, H. Roulet, and G. Dufour, Spectroscopic studies of nickel(II) and nickel(III) species generated upon thermal treatments of nickel/ceria-supported materials, J. Phys. Chem., 100, 4919-4929 (1996).
  20. L. P. Matte, A. S. Kilian, L. Luza, M. C. M. Alves, J. Morais, D. L. Baptista, J. Dupont, and F. Bernardi, Influence of $CeO_2$ support on the reduction properties of Cu/$CeO_2$ and Ni/$CeO_2$ nanoparticles, J. Phys. Chem. C, 119, 26459-26470 (2015).
  21. P. Pal, R. K. Singha, A. Saha, R. Bal, and A. B. Panda, Defect-induced efficient partial oxidation of methane over nonstoichometric Ni/$CeO_2$ nanocrystals, J. Phys. Chem. C, 119, 13610-13618 (2015).
  22. G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, and X. Zhang, Role of surface Ni and Ce species of Ni/$CeO_2$ catalysts in $CO_2$ methanation, Appl. Surf. Sci., 383, 248-252 (2016).
  23. Y. Guo, J. Zou, X. Shi, P. Rukundo, and Z.-J. Wang, A Ni/$CeO_2$-CDC-SiC catalyst with improved coke resistance in $CO_2$ reforming of methane, ACS Sustain. Chem. Eng., 5, 2330-2338 (2017).
  24. R. K. Pati, I. C. Lee, S. Hou, O. Akhueemonkhan, K. J. Gaskell, Q. Wang, A. I. Frenkel, D. Chu, L. G. Salamanca-Riba, and S. H. Ehrman, Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction, ACS Appl. Mater. Interfaces, 1, 2624-2635 (2009).