DOI QR코드

DOI QR Code

Partial Oxidation of Methane to Syngas over M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) Catalysts

M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) 촉매상에서 합성가스 제조를 위한 메탄의 부분산화반응

  • Seo, Ho Joon (Department of Chemical and Biomolecular Engineering, Chonnam National University) ;
  • Kim, Yong Sung (Korea BASF Co.)
  • Received : 2017.09.18
  • Accepted : 2017.11.06
  • Published : 2017.12.10

Abstract

M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) catalysts were prepared for the partial oxidation of methane (POM) to syngas. The catalysts were characterized by BET, TEM, and XPS. The BET-specific surface area and average pore size for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm) were 538.8, 504.3, and $447.3m^2/g$ and 6.4, 6.8, and 7.1 nm, respectively. TEM results showed that the mesoporous hexagonol structure was formed for SBA-15, while the homogeneous dispersion of Ni and Ce particles on the surface was formed for Ce(10)-Ni(5)/SBA-15 caused by the confinment effect of SBA-15. XPS data confirmed that $Ce^{4+}$ and $Ce^{3+}$ on the surface catalyst have two oxidation states due to the lattice oxygen species ($O^{2-}$, $O^-$). The yields of POM to syngas over Ce(10)-Ni(5)/SBA-15 were 52.9% $H_2$ and 21.7% CO at 1 atm, 973 K, $CH_4/O_2=2$, $GHSV=1.08{\times}10^5mL/g_{cat.}{\cdot}h$, and these values were kept constant even after 75 h on streams. The same tendency of syngas yields was observed for M(10)-Ni(5)/SBA-15(M=Ce, Nd, Sm). These results confirm that the redox reaction of promoters including Ce, Nd, and Sm enhanced the stability and yield of catalysts.

References

  1. R. Horn and R. Schlogl, Methane activation by heterogeneous catalysis, Catal. Lett., 145, 23-39 (1915).
  2. H. J. Seo, U. I. Kang, and O. Y. Kwon, Characterization of Pd impregnated on metal/silica-pillared H-keyaites (M-SPK, M=Ti, Zr) catalysts for partial oxidation of methane to hydrogen, J. Ind. Eng. Chem., 20, 1332-1337 (2014). https://doi.org/10.1016/j.jiec.2013.07.014
  3. W. Taifan and J. Baltrusaitis, $CH_4$ conversion to value added products : potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B, 198, 525-547 (2016). https://doi.org/10.1016/j.apcatb.2016.05.081
  4. M. Gharlbi, F. T. Zangeneh, F. Yaripour, and S. Sahebdelfar, Nanocatalysts for conversion of natural gas to liquid fuels and petrochemical feedstocks, Appl. Catal. B, 443-444, 8-26 (2012). https://doi.org/10.1016/j.apcata.2012.06.039
  5. P. Tang, Q. Zhu, Z. Wu, and D. Ma, Methane activation: The past and future, Energy Environ. Sci., 7, 2580-2591 (2014). https://doi.org/10.1039/C4EE00604F
  6. H. Tian, X. Li, L. Zeng, and J. Gong, Recent advances on the design of group VIII base-metal catalysts with encapsulated structures, ACS Catal., 5, 4959-4977 (2015). https://doi.org/10.1021/acscatal.5b01221
  7. S. Zhang, S. Muratsugu, N. Ishiguro, and M. Tada, Ceria-doped syn catalysts for dry reforming of methane, ACS Catal., 3, 1855-1864 (2013). https://doi.org/10.1021/cs400159w
  8. J. M. M. de la Hoz and P. B. Balbuena, Small-molecule activation driven by confinement effects, ACS Catal., 5, 215-224 (2015). https://doi.org/10.1021/cs5013798
  9. W. Cai, J. Yu, C. Anand, A. Vinu, and M. Jaroniec, Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties, Chem. Mater., 23, 1147-1157 (2011). https://doi.org/10.1021/cm102512v
  10. Z. Wu, Q. Li, D. Feng, P. A. Webley, and D. Zhao, Ordered mesoporous crystalline ${\gamma}$-$Al_2O_3$ with variable architecture and porosity from a single hard template, J. Am. Chem. Soc., 132, 12042-12050 (2010). https://doi.org/10.1021/ja104379a
  11. Q. Yuan, A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang, W. T. Duan, H. C. Lin, and C. H. Yun, Facile synthesis for ordered mesoporous ${\gamma}$-aluminas with high themal stability, J. Am. Chem. Soc., 130, 3465-3472 (2008). https://doi.org/10.1021/ja0764308
  12. N. Wang, Huang, K. Shen, L. Huang, X. Yu, W. Qian, and W. Chu, Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal., 3, 1638-1651 (2013). https://doi.org/10.1021/cs4003113
  13. H. Liu, Y. Li, H. Wu, W. Yang, and D. He, Effect of Nd, Ce, La modification on catalytic performance of Ni/SBA-15 catalyst in $CO_2$ reformig of $CH_4$, Chin. J. Catal., 35, 1520-1528 (2014). https://doi.org/10.1016/S1872-2067(14)60095-4
  14. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 120, 6024-6036 (1998). https://doi.org/10.1021/ja974025i
  15. L. Xu, W. Mi, and Q. Su, Hydrogen production through diesel steam reforming over rare-earth promoted Ni/${\gamma}$-$Al_2O_3$ catalysts, J. Nat. Gas Chem., 20, 287-293 (2011). https://doi.org/10.1016/S1003-9953(10)60188-0
  16. X. P. Dai, R. J. Li, C. C. Yu, and Z. P. Hao, Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using $AFeO_3$ (A=La, Nd, Eu) perovskite-type oxides as oxygen storage, J. Phys. Chem. B, 110, 22525-22531 (2006). https://doi.org/10.1021/jp063490b
  17. W. D. Zhang, B. S. Liu, Y. P. Zhan, and Y. L. Tian, Syngas production via $CO_2$ reforming of methane over $Sm_2O_3-La_2O_3$- supported Ni catalyst, Ind. Eng. Chem. Res., 48, 7498-7504 (2009). https://doi.org/10.1021/ie9001298
  18. N. Wang, W. Chu, T. Zhang, and X. S. Zhao, Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas, Int. J. Hydrogen Energy, 37, 19-30 (2012). https://doi.org/10.1016/j.ijhydene.2011.03.138
  19. A. Davidson, J. F. Tempere, M. Che, H. Roulet, and G. Dufour, Spectroscopic studies of nickel(II) and nickel(III) species generated upon thermal treatments of nickel/ceria-supported materials, J. Phys. Chem., 100, 4919-4929 (1996). https://doi.org/10.1021/jp952268w
  20. L. P. Matte, A. S. Kilian, L. Luza, M. C. M. Alves, J. Morais, D. L. Baptista, J. Dupont, and F. Bernardi, Influence of $CeO_2$ support on the reduction properties of Cu/$CeO_2$ and Ni/$CeO_2$ nanoparticles, J. Phys. Chem. C, 119, 26459-26470 (2015). https://doi.org/10.1021/acs.jpcc.5b07654
  21. P. Pal, R. K. Singha, A. Saha, R. Bal, and A. B. Panda, Defect-induced efficient partial oxidation of methane over nonstoichometric Ni/$CeO_2$ nanocrystals, J. Phys. Chem. C, 119, 13610-13618 (2015). https://doi.org/10.1021/acs.jpcc.5b01724
  22. G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, and X. Zhang, Role of surface Ni and Ce species of Ni/$CeO_2$ catalysts in $CO_2$ methanation, Appl. Surf. Sci., 383, 248-252 (2016). https://doi.org/10.1016/j.apsusc.2016.04.180
  23. Y. Guo, J. Zou, X. Shi, P. Rukundo, and Z.-J. Wang, A Ni/$CeO_2$-CDC-SiC catalyst with improved coke resistance in $CO_2$ reforming of methane, ACS Sustain. Chem. Eng., 5, 2330-2338 (2017). https://doi.org/10.1021/acssuschemeng.6b02661
  24. R. K. Pati, I. C. Lee, S. Hou, O. Akhueemonkhan, K. J. Gaskell, Q. Wang, A. I. Frenkel, D. Chu, L. G. Salamanca-Riba, and S. H. Ehrman, Flame synthesis of nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts for the water-gas shift (WGS) reaction, ACS Appl. Mater. Interfaces, 1, 2624-2635 (2009). https://doi.org/10.1021/am900533p