DOI QR코드

DOI QR Code

Introduction of a novel swabbing material of a wiper and establishment of an optimal method for the collection of organic explosive residues

  • Sung, Tae-myung (Forensic Chemistry & Toxicology Section, Scientific Investigation Laboratory, Criminal Investigation Command) ;
  • Lee, Jong Hyup (Headquarters, Criminal Investigation Command) ;
  • Cho, Ju-ik (Forensic Chemistry & Toxicology Section, Scientific Investigation Laboratory, Criminal Investigation Command)
  • Received : 2017.09.06
  • Accepted : 2017.11.04
  • Published : 2017.12.25

Abstract

The identification of explosive residues on specimens obtained from an explosion event is a crucial factor for assessing the cause of the explosion. In order to detect the components of explosives, the explosive residues deposited on surfaces are commonly extracted using swabbing materials pre-wetted with an organic solvent. The residues are then analyzed with analytical instruments such as LC/MS and CE/MS. Most conventionally used swabbing media such as cotton swabs or cotton tip swabs seem unsuitable for extracting explosive residues from the surface of a large area of clothes because the swabbing materials tend to be damaged easily, and because only a relatively small amount of explosives is collected. To overcome these problems, we have introduced a novel wiper ($215{\times}210mm$, single layer, Yuhan-Kimberly, Republic of Korea) as a swabbing material to recover representative organic explosives, namely, TNT, RDX, tetryl, HMX, PETN, and NG, from a large area of clothes. Different sides of the wiper, which was folded in half five times, was used to swab the surface of a clothing. We compared this novel wiper with a cotton swab and a cotton tip swab in terms of the recovery efficiency for the aforementioned organic explosives by pre-wetting with methanol, acetone, and acetonitrile, respectively. We identified that this novel wiper collected a significantly higher amount of organic explosive residues than a cotton swab or a cotton tip swab when using methanol as an extracting solvent.

Keywords

swabbing material;organic explosives;wiper;cotton swab;cotton tip swab

References

  1. H. E. Cullum, C. McGavigan, C. Z. Uttley, M. A. M. Stroud and D. C. Warren, J. Forensic Sci., 49(4), 1-7 (2004).
  2. R. Waddell, D. E. Dale, M. Monagle and S. A. Smith, J. Chromatogr. A, 1062, 125-131 (2005). https://doi.org/10.1016/j.chroma.2004.11.028
  3. J. S. Wallace and W. J. McKeown, J. Forensic Sci., 33, 107-116 (1993). https://doi.org/10.1016/S0015-7368(93)72988-6
  4. M. E. Sigman and C. Y. Ma, Anal. Chem., 71, 4119-4124 (1999). https://doi.org/10.1021/ac9901079
  5. A. Zeichner, S. Abramovich-Bar, T. Tamiri and J. Almog, Forensic Sci. Int., 184, 42-46 (2009). https://doi.org/10.1016/j.forsciint.2008.11.012
  6. N. Song-im, S. Benson and C. Lennard, Forensic Sci. Int., 222, 102-110 (2012). https://doi.org/10.1016/j.forsciint.2012.05.006
  7. D. A. DeTata, P. A. Collins and A. J. McKinley, J. Forensic Sci., 58(3), 757-763 (2013). https://doi.org/10.1111/1556-4029.12078
  8. J. D. Twibell, J. M. Home, K. W. Smalldon, D. G. Higgs and T. S. Hayes, J. Forensic Sci., 27(4), 792-800 (1982).
  9. R. D. Voyksner, J. Chromatogr., 354, 393-405 (1986). https://doi.org/10.1016/S0021-9673(01)87040-0
  10. P. Kolla, J. Forensic Sci., 36(5), 1342-1359 (1991).
  11. J. C. Oxley, J. L. Smith, E. Resende, E. Pearce and T. Chamberlain, J. Forensic Sci., 48(2), 334-342 (2003).
  12. D. Perret, S. Marchese, A. Gentili, R. Curini, A. Terracciano and E. Bafile, Chromatographia, 68, 517-524 (2008). https://doi.org/10.1365/s10337-008-0746-8
  13. J. M. F. Douse, J. Chromatogr., 234, 415-425 (1982). https://doi.org/10.1016/S0021-9673(00)81879-8
  14. J. Yinon and S. Zitrin, 'The analysis of explosives', p.221, Pergamon Press, Oxford, 1981.
  15. R. Kinghorn and C. Milner, 'Analysis of trace residue of explosive materials by Time-of-Flight LC/MS', Agilent Technologies, Wilmington, DE, 2007.
  16. M. E. Walsh and T. Ranney, J. Chromatogr Sci., 36, 406-416 (1998). https://doi.org/10.1093/chromsci/36.8.406
  17. X. Zhao and J. Yinon, J. Chromatogr. A, 977, 59-68 (2002). https://doi.org/10.1016/S0021-9673(02)01349-3
  18. R. Tachor, V. Pichon, M. B. LeBorgne and J. J. Minet, J. Chromatogr. A, 1154, 174-181 (2007). https://doi.org/10.1016/j.chroma.2007.03.059
  19. D. DeTata, P. Collins and A. McKinley, Forensic Sci. Intl., 233, 63-74 (2013). https://doi.org/10.1016/j.forsciint.2013.08.007
  20. R. Tachon, V. Pichon, M. B. LeBorgne and J. J. Minet, J. Chromatogr. A, 1185(1), 1-8 (2008). https://doi.org/10.1016/j.chroma.2008.01.026
  21. T. F. Jenkins, P. G. Thorne, K. F. Myers, E. F. McCormick and K. F. Myers, 'Preservation of water samples containing nitroaromatics and nitramines'. Honover, NJ: US Army Cold Regions Research and Engineering Laboratory, Special Report 93-16, 1995.
  22. N. Song-im, 'Explosive residue analysis: evaluation and optimization of sampling, storage and cleanup protocols', PhD Thesis, University of Canberra, Australia, 2011.
  23. T. Tamiri and S. Zitrin, J. Energ. Mater., 4, 215-237 (1986). https://doi.org/10.1080/07370658608011343