Introduction of a novel swabbing material of a wiper and establishment of an optimal method for the collection of organic explosive residues

  • Sung, Tae-myung (Forensic Chemistry & Toxicology Section, Scientific Investigation Laboratory, Criminal Investigation Command) ;
  • Lee, Jong Hyup (Headquarters, Criminal Investigation Command) ;
  • Cho, Ju-ik (Forensic Chemistry & Toxicology Section, Scientific Investigation Laboratory, Criminal Investigation Command)
  • Received : 2017.09.06
  • Accepted : 2017.11.04
  • Published : 2017.12.25


The identification of explosive residues on specimens obtained from an explosion event is a crucial factor for assessing the cause of the explosion. In order to detect the components of explosives, the explosive residues deposited on surfaces are commonly extracted using swabbing materials pre-wetted with an organic solvent. The residues are then analyzed with analytical instruments such as LC/MS and CE/MS. Most conventionally used swabbing media such as cotton swabs or cotton tip swabs seem unsuitable for extracting explosive residues from the surface of a large area of clothes because the swabbing materials tend to be damaged easily, and because only a relatively small amount of explosives is collected. To overcome these problems, we have introduced a novel wiper ($215{\times}210mm$, single layer, Yuhan-Kimberly, Republic of Korea) as a swabbing material to recover representative organic explosives, namely, TNT, RDX, tetryl, HMX, PETN, and NG, from a large area of clothes. Different sides of the wiper, which was folded in half five times, was used to swab the surface of a clothing. We compared this novel wiper with a cotton swab and a cotton tip swab in terms of the recovery efficiency for the aforementioned organic explosives by pre-wetting with methanol, acetone, and acetonitrile, respectively. We identified that this novel wiper collected a significantly higher amount of organic explosive residues than a cotton swab or a cotton tip swab when using methanol as an extracting solvent.


  1. H. E. Cullum, C. McGavigan, C. Z. Uttley, M. A. M. Stroud and D. C. Warren, J. Forensic Sci., 49(4), 1-7 (2004).
  2. R. Waddell, D. E. Dale, M. Monagle and S. A. Smith, J. Chromatogr. A, 1062, 125-131 (2005).
  3. J. S. Wallace and W. J. McKeown, J. Forensic Sci., 33, 107-116 (1993).
  4. M. E. Sigman and C. Y. Ma, Anal. Chem., 71, 4119-4124 (1999).
  5. A. Zeichner, S. Abramovich-Bar, T. Tamiri and J. Almog, Forensic Sci. Int., 184, 42-46 (2009).
  6. N. Song-im, S. Benson and C. Lennard, Forensic Sci. Int., 222, 102-110 (2012).
  7. D. A. DeTata, P. A. Collins and A. J. McKinley, J. Forensic Sci., 58(3), 757-763 (2013).
  8. J. D. Twibell, J. M. Home, K. W. Smalldon, D. G. Higgs and T. S. Hayes, J. Forensic Sci., 27(4), 792-800 (1982).
  9. R. D. Voyksner, J. Chromatogr., 354, 393-405 (1986).
  10. P. Kolla, J. Forensic Sci., 36(5), 1342-1359 (1991).
  11. J. C. Oxley, J. L. Smith, E. Resende, E. Pearce and T. Chamberlain, J. Forensic Sci., 48(2), 334-342 (2003).
  12. D. Perret, S. Marchese, A. Gentili, R. Curini, A. Terracciano and E. Bafile, Chromatographia, 68, 517-524 (2008).
  13. J. M. F. Douse, J. Chromatogr., 234, 415-425 (1982).
  14. J. Yinon and S. Zitrin, 'The analysis of explosives', p.221, Pergamon Press, Oxford, 1981.
  15. R. Kinghorn and C. Milner, 'Analysis of trace residue of explosive materials by Time-of-Flight LC/MS', Agilent Technologies, Wilmington, DE, 2007.
  16. M. E. Walsh and T. Ranney, J. Chromatogr Sci., 36, 406-416 (1998).
  17. X. Zhao and J. Yinon, J. Chromatogr. A, 977, 59-68 (2002).
  18. R. Tachor, V. Pichon, M. B. LeBorgne and J. J. Minet, J. Chromatogr. A, 1154, 174-181 (2007).
  19. D. DeTata, P. Collins and A. McKinley, Forensic Sci. Intl., 233, 63-74 (2013).
  20. R. Tachon, V. Pichon, M. B. LeBorgne and J. J. Minet, J. Chromatogr. A, 1185(1), 1-8 (2008).
  21. T. F. Jenkins, P. G. Thorne, K. F. Myers, E. F. McCormick and K. F. Myers, 'Preservation of water samples containing nitroaromatics and nitramines'. Honover, NJ: US Army Cold Regions Research and Engineering Laboratory, Special Report 93-16, 1995.
  22. N. Song-im, 'Explosive residue analysis: evaluation and optimization of sampling, storage and cleanup protocols', PhD Thesis, University of Canberra, Australia, 2011.
  23. T. Tamiri and S. Zitrin, J. Energ. Mater., 4, 215-237 (1986).