DOI QR코드

DOI QR Code

Proteomic analysis of Korean mothers' human milk at different lactation stages; postpartum 1, 3, and 6 weeks

출산 후 경과한 날에 따른 한국인 산모의 모유 단백체 분석

  • Park, Jong-Moon (Department of Pharmaceutics, College of Pharmacy, Gachon University) ;
  • lee, Hookeun (Department of Pharmaceutics, College of Pharmacy, Gachon University) ;
  • Song, Seunghyun (Karl-Franzens-Universitaet Graz) ;
  • Hahn, Won-Ho (Department of Pediatrics, Neonatology, Soon Chun Hyang University) ;
  • Kim, Mijeong (Department of Applied Bioscience, Konkuk University) ;
  • Lee, Joohyun (Department of Applied Bioscience, Konkuk University) ;
  • Kang, Nam Mi (Department of Nursing, Konkuk University)
  • 박종문 (가천대학교 약학대학) ;
  • 이후근 (가천대학교 약학대학) ;
  • 송승현 (그라츠카를프란츠 대학교) ;
  • 한원호 (순천향대 소아과) ;
  • 김미정 (건국대학교 응용생물과학과) ;
  • 이주현 (건국대학교 응용생물과학과) ;
  • 강남미 (건국대학교 간호학과)
  • Received : 2017.08.28
  • Accepted : 2017.12.05
  • Published : 2017.12.25

Abstract

In this study, patterns of proteome expression were monitored and specifically expressed proteins in human milk were detected in collected human milk after 1 week, 3 weeks, and 6 weeks from delivery. A quantitative shotgun proteomic approach was used to identify human milk proteins and reveal their relative expression amounts. For each sample, two independent human milk samples from two mothers were pooled, and then three replicated shotgun proteomic analyses were carried out. Casein, which is a highly abundant protein in human milk, was removed, and then trypsin was treated to produce a digested peptide mixture. The peptides were loaded in the home-made reversed-phase C18 fused-silica capillary column, and then the eluted peptides were analyzed by using a linear ion-trap mass spectrometer. The relative quantitation of proteins was performed by the normalized spectral count method. For each sample, 81-109 non-redundant proteins were identified. The identified proteins consisted of glycoproteins, metabolic enzyme, and chaperon enzymes such as lactoferrin, carboxylic ester hydrolase, and clusterin. The comparative analysis for the 63 proteins, which were reproducibly identified in all three replications, revealed that 25 proteins were statically significant differentially expressed. Among the differentially expressed proteins, Ig lambda-7 chain C region and tenascin drastically decreased with the delivery time.

Acknowledgement

Supported by : 한국연구재단

References

  1. R. Jenness, Semin Perinatol, 3(3), 225-39 (1979).
  2. A. Mange, V. Bellet, E. Tuaillon, P. Van de Perre and J. Solassol, J. Chromatogr B Analyt Technol Biomed Life Sci, 876(2), 252-256 (2008). https://doi.org/10.1016/j.jchromb.2008.11.003
  3. K. L. Beck, D. Weber, B. S. Phinney, J. T. Smilowitz, K. Hinde, B. Lonnerdal, I. Korf and D. G. Lemay, J. Proteome Res., 14(5), 2143-2157 (2015). https://doi.org/10.1021/pr501243m
  4. J. W. Froehlich, E. D. Dodds, M. Barboza, E. L. McJimpsey, R. R. Seipert, J. Francis, H. J. An, S. Freeman, J. B. German and C. B. Lebrilla, J. Agric. Food Chem, 58(10), 6440-6448 (2010). https://doi.org/10.1021/jf100112x
  5. Y. Liao, R. Alvarado, B. Phinney and B. Lonnerdal, J Proteome Res, 10(8), 3530-3541 (2011). https://doi.org/10.1021/pr200149t
  6. A. C. Paoletti, T. J. Parmely, C. Tomomori-Sato, S. Sato, D. Zhu, R. C. Conaway, J. W. Conaway, L. Florens and M. P. Washburn, Proc. Natl. Acad Sci. USA, 103(50), 18928-18933 (2006). https://doi.org/10.1073/pnas.0606379103
  7. B. Zybailov, A. L. Mosley, M. E. Sardiu, M. K. Coleman, L. Florens and M. P. Washburn, J. Proteome Res., 5(9), 2339-2347 (2006). https://doi.org/10.1021/pr060161n
  8. N. M. Griffin, J. Yu, F. Long, P. Oh, S. Shore, Y. Li, J. A. Koziol and J. E. Schnitzer, Nat. Biotechnol, 28(1), 83-89 (2010). https://doi.org/10.1038/nbt.1592
  9. D. S. Newburg, G. M. Ruiz-Palacios and A. L. Morrow, Annu. Rev. Nutr., 25, 37-58 (2005). https://doi.org/10.1146/annurev.nutr.25.050304.092553
  10. C. E. Molinari, Y. S. Casadio, B. T. Hartmann, A. Livk, S. Bringans, P. G. Arthur and P. E. Hartmann, J Proteome Res, 11(3), 1696-1714 (2012). https://doi.org/10.1021/pr2008797
  11. W. L. Hurley and P. K. Theil, Nutrients, 3(4), 442-474 (2011). https://doi.org/10.3390/nu3040442
  12. P. Brandtzaeg, J. Pediatr, 156(2 Suppl), S8-15 (2010). https://doi.org/10.1016/j.jpeds.2009.11.014
  13. E. A. Lekchnov, S. E. Sedykh, P. S. Dmitrenok, V. N. Buneva, and G. A. Nevinsky, Int. Immunol., 27(6), 297-306 (2015). https://doi.org/10.1093/intimm/dxv003
  14. R. G. Mansour, L. Stamper, F. Jaeger, E. McGuire, G. Fouda, J. Amos, K. Barbas, T. Ohashi, S. M. Alam, H. Erickson and S. R. Permar, PLoS One, 11(5), e0155261 (2016). https://doi.org/10.1371/journal.pone.0155261
  15. G. G. Fouda, F. H. Jaeger, J. D. Amos, C. Ho, E. L. Kunz, K. Anasti, L. W. Stamper, B. E. Liebl, K. H. Barbas, T. Ohashi, M. A. Moseley, H. X. Liao, H. P. Erickson, S. M. Alam and S. R. Permar, Proc Natl Acad Sci U S A, 110(45), 18220-18225 (2013). https://doi.org/10.1073/pnas.1307336110
  16. T. Yang, Y. Zhang, Y. Ning, L. You, D. Ma, Y. Zheng, X. Yang, W. Li, J. Wang and P. Wang, Chin. Med. J. (Engl), 127(9), 1721-1725 (2014).
  17. W. H. Hahn, J. H. Song, J. B. Seo, J. E. Lee, J. S. Lee, S. Song and N. M. Kang, Asia Pac. J. Clin. Nutr., 27(1), 204-210 (2018).