DOI QR코드

DOI QR Code

Analytical trends in mass spectrometry based metabolomics approaches of neurochemicals for diagnosis of neurodegenerative disorders

퇴행성신경질환의 진단을 위한 신경전달물질 대사체의 질량 분석법 동향

  • Received : 2017.10.14
  • Accepted : 2017.12.09
  • Published : 2017.12.25

Abstract

Because neurochemicals are related to homeostasis and cognitive and behavioral functions in human body and because they enable the diagnosis of numerous neurodegenerative disorders, there has been increasing interest in the development of analytical platforms for neurochemical profiling in biological samples. In particular, mass spectrometry (MS)-based analytical methods combined with chromatographic separation have been widely used to profile neurochemicals in metabolic pathways. However, development of delicate sample preparation procedures and highly sensitive instrumental detection is necessary considering the trace levels and chemical instabilities of neurochemicals in biological samples. Therefore, in this review, analytical trends in MS-based metabolomics approaches to neurochemicals in multiple biological samples, such as urine, blood, CSF, and biological tissues, are discussed. This paper is expected to contribute to the development of an analytical platform to discover biomarkers that will aid diagnosis, prognosis, and treatment of neurodegenerative disorders.

Keywords

neurochemicals;profiling analysis;chromatographic separation;mass spectrometry;metabolomics approach

References

  1. M. Sano, V. Ferchaud-Roucher, C. Nael, A. Aguesse, G. Poupeau, B. Castellano and D. Darmaun, J. Mass Spectrom., 49, 128-135 (2014). https://doi.org/10.1002/jms.3313
  2. O. Midttun, G. Kvalheim and P. M. Ueland, Anal. Bioanal. Chem., 405, 2009-2017 (2013). https://doi.org/10.1007/s00216-012-6602-6
  3. W. Lee, N. H. Park, T.-B. Ahn, B. C. Chung and J. Hong, J. Chromatogr. A, (2017), DOI: 10.1016/j.chroma.2017.10.021. https://doi.org/10.1016/j.chroma.2017.10.021
  4. S. Jiang, Z. Liang, L. Hao and L. Li, Electrophoresis, 37, 1031-1038 (2016). https://doi.org/10.1002/elps.201500497
  5. H. Chu, A. Zhang, Y. Han, S. Lu, L. Kong, J. Han, Z. Liu, H. Sun and X. Wang, J. Chromatogr. B, 1015-1016, 50061 (2016).
  6. W. Zhou, B. Zhu, F. Liu, C. Lyu, S. Zhang, C. Yan, Y. Cheng and H. Wei, J. Chromatogr. B, 1002, 379-386 (2015). https://doi.org/10.1016/j.jchromb.2015.08.042
  7. K. Inoue, Y. Miyazaki, K. Unno, J. Z. Min, K. Todoroki and T. Toyo'oka, Biomed. Chromatogr., 30, 55-61 (2016). https://doi.org/10.1002/bmc.3502
  8. M. S. S. Bergh, I. L. Bogen, E. Lundanes and A. M. L. Oiestad, J. Chromatogr. B, 1028, 120-129 (2016). https://doi.org/10.1016/j.jchromb.2016.06.011
  9. F. Kondo, M. Tachi, M. Gosho, M. Fukayama, K. Yoshikawa and S. Okada, Anal. Bioanal. Chem., 407, 5261-5272 (2015). https://doi.org/10.1007/s00216-015-8496-6
  10. S. Greco, W. Danysz, A. Zivkovic, R. Gross and H. Stark, Anal. Chim. Acta, 771, 65-72 (2013). https://doi.org/10.1016/j.aca.2013.02.004
  11. P. Voehringer, R. Fuertig and B. Ferger, J. Chromatogr. B, 939, 92-97 (2013). https://doi.org/10.1016/j.jchromb.2013.09.011
  12. X.-E. Zhao, Y. He, P. Yan, N. Wei, R. Wang, J. Sun, L. Zheng, S. Zhu and J. You, RSC Adv., 6, 108635-108644 (2016). https://doi.org/10.1039/C6RA23808D
  13. A. Gottas, A. Ripel, F. Boix, V. Vindenes, J. Morland and E. L. Oiestad, J. Pharmacol. Toxicol. Methods, 74, 75-79 (2015). https://doi.org/10.1016/j.vascn.2015.06.002
  14. R. Nirogi, P. Komarneni, V. Kandikere, R. Boggavarapu, G. Bhyrapuneni, V. Benade and S. Gorentla, J. Chromatogr. B, 913-914, 41-47 (2013). https://doi.org/10.1016/j.jchromb.2012.09.034
  15. X. S. Li, S. Li and G. Kellermann, J. Chromatogr. A, 1449, 54-61 (2016). https://doi.org/10.1016/j.chroma.2016.04.039
  16. T. M. Fonseka, X.-Y. Wen, J. A. Foster and S. H. Kennedy, J. Neurosci. Res., 94, 3-14 (2016). https://doi.org/10.1002/jnr.23639
  17. A. Aragon, J. Legradi, A. Ballesteros-Gomez, J. Legler, M. van Velzen, J. de Boer and P. Leonards, Anal. Bioanal. Chem., 409, 2931-2939 (2017). https://doi.org/10.1007/s00216-017-0239-4
  18. S. Lista, H. Zetterberg, B. Dubois, K. Blennow and H. Hampel, J. Neurol., 261, 1234-1243 (2014). https://doi.org/10.1007/s00415-014-7366-z
  19. R. Gonzalez-Dominguez, A. Sayago and A. Fernandez-Recamales, J. Chromatogr. B, (2017) DOI: 10.1016/j.jchromb.2017.02.008. https://doi.org/10.1016/j.jchromb.2017.02.008
  20. M. M. Koek, R. H. Jellema, van der J. Greef, A.C. Tas and T. Hankemeier, Metabolomics, 7, 307-328 (2011). https://doi.org/10.1007/s11306-010-0254-3
  21. K. K. Pasikanti, P. C. Ho and E. C. Y. Chan, J. Chromatogr. B, 871, 202-211 (2008). https://doi.org/10.1016/j.jchromb.2008.04.033
  22. P. S imek, P. Hus k and H. Zahradniekova, Anal. Chem., 80, 5776-5782 (2008). https://doi.org/10.1021/ac8003506
  23. N. A. Alterman and P. Hutzinger, In 'Amino acid handbook', Chapter 13, Springer, New York, 2012.
  24. M.-J. Paik, D.-T. Nguyen, J. Yoon, H. S. Chae, K.-R. Kim, G. Lee and P. C. Lee, Bull. Korean Chem. Soc., 32, 2418-2422 (2011). https://doi.org/10.5012/bkcs.2011.32.7.2418
  25. K.-R. Kim, H.-G. Park, M.-J. Paik, H.-S. Ryu, K.S. Oh, S.-W. Myung and H. M. Liebich, J. Chromatogr. B., 712, 11-22 (1998). https://doi.org/10.1016/S0378-4347(98)00155-8
  26. M.-J. Paik, E.-Y. Cho, H. Kim, K.-R. Kim, S. Choi, Y.-H. Ahn and G. Lee, Biomed. Chromatogr., 22, 450-453 (2008). https://doi.org/10.1002/bmc.966
  27. M.-J. Paik, H.-J. Lee and K.-R. Kim, J. Chromatogr. B, 821, 94-104 (2005). https://doi.org/10.1016/j.jchromb.2005.04.011
  28. M.-J. Paik and K.-R. Kim, J. Chromatogr. A, 1034, 13-23 (2004). https://doi.org/10.1016/j.chroma.2004.02.032
  29. S. T. Kadam and S. S. Kim, J. Organomet. Chem., 694, 2562-2566 (2009). https://doi.org/10.1016/j.jorganchem.2009.04.001
  30. H. J. Shin, N. H. Park, W. Lee, M. H. Choi, B. C. Chung and J. Hong, J. Chromatogr. B, 1051, 97-107 (2017). https://doi.org/10.1016/j.jchromb.2017.03.015
  31. H. Lu, J. Yu, J. Wang, L. Wu, H. Xiao and R. Gao, J. Pharm. Biomed. Anal., 122, 42-51 (2016). https://doi.org/10.1016/j.jpba.2016.01.031
  32. H. I. Woo, J. S. Yang, H. J. Oh, Y. Y. Cho, J. H. Kim, H.-D. Park and S.-Y. Lee, Clin. Biochem., 49, 573-579 (2016). https://doi.org/10.1016/j.clinbiochem.2016.01.010
  33. M. Monteleone, A. Naccarato, G. Sindona and A. Tagarelli, Anal. Chim. Acta, 759, 66-73 (2013). https://doi.org/10.1016/j.aca.2012.11.017
  34. D. S. Domingues, E. J. Crevelin, L. A. B. De Moraes, J. E. C. Hallak, J. A. De Souza Crippa and M. E. C. Queiroz, J. Sep. Sci., 38, 780-787 (2015). https://doi.org/10.1002/jssc.201400943
  35. Q. Liang, H. Liu, T. Zhang, Y. Jiang, H. Xing and A. Zhang, RSC Adv., 6, 3586-3591 (2016). https://doi.org/10.1039/C5RA19349D
  36. X.-J. Zhai, F. Chen, C. R. Zhu and Y.-N. Lu, Biomed. Chromatogr., 29, 1737-1743 (2015). https://doi.org/10.1002/bmc.3487
  37. C. Lv, Q. Li, X. Liu, B. He, Z. Sui, H. Xu, Y. Yin, R. Liu and K. Bi, J. Mass Spectrom., 50, 354-363 (2015). https://doi.org/10.1002/jms.3536
  38. J. Bicker, A. Fortuna, G. Alves and A. Falcao, Anal. Chim. Acta, 768, 12-34 (2013). https://doi.org/10.1016/j.aca.2012.12.030
  39. L. Brunelli, G. Ristagno, R. Bagnati, F. Fumagalli, R. Latini, R. Fanelli and R. Pastorelli, Metabolomics, 9, 839-852 (2013). https://doi.org/10.1007/s11306-013-0506-0
  40. X. Han, M. Min, J. Wang, Z. Bao, H. Fan, X. Li, T.I. Adelusi, X. Zhou and X. Yin, J. Neurosci. Res., (2017), DOI: 10.1002/jnr.24098. https://doi.org/10.1002/jnr.24098
  41. L. Konieczna, A. Roszkowska, A. Synakiewicz, T. Stachowicz-Stencel, E. Adamkiewicz-Drozynska and T. Baczek, Talanta, 150, 331-339 (2016). https://doi.org/10.1016/j.talanta.2015.12.056
  42. M. M. Moein, A. Abdel-Rehim and M. Abdel-Rehim, TrAC - Trends Anal. Chem., 67, 34-44 (2015). https://doi.org/10.1016/j.trac.2014.12.003
  43. M. M. Khamis, D. J. Adamko and A. El-Aneed, Mass Spectrom. Reviews, 36, 115-134 (2017). https://doi.org/10.1002/mas.21455
  44. D. T. Nguyen, I. S. Cho, J. W. Kim, K. R. Kim, G. Lee and M. J. Paik, Biomed. Chromatogr., 27, 216-221 (2013). https://doi.org/10.1002/bmc.2778
  45. L. Konieczna, A. Roszkowska, M. Niedwiecki and T. Baczek, J. Chromatogr. A, 1431, 111-121 (2016). https://doi.org/10.1016/j.chroma.2015.12.062
  46. B. Hashemi, P. Zohrabi, K.-H. Kim, M. Shamsipur, A. Deep and J. Hong, TrAC - Trends Anal. Chem., 97, 83-95 (2017). https://doi.org/10.1016/j.trac.2017.08.014
  47. I. Moreno, M. Barroso, A. Martinho, A. Cruz and E. Gallardo, J. Chromatogr. B, 1004, 67-78 (2015). https://doi.org/10.1016/j.jchromb.2015.09.032
  48. T. Rosenling, M. P. Stoop, A. Smolinska, B. Muilwijk, L. Coulier, S. Shi, A. Dane, C. Christin, F. Suits, P.L. Horvatovich, S. S. Wijmenga, L. M. C. Buydens, R. Vreeken, T. Hankemeier, A. J. Van Gool, T. M. Luider and R. Bischoff, Clin. Chem., 57, 1703-1711 (2011). https://doi.org/10.1373/clinchem.2011.167601
  49. J. M. T. Wong, P. A. Malec, O. S. Mabrouk, J. Ro, M. Dus and R. T. Kennedy, J. Chromatogr. A, 1446, 78-90 (2016). https://doi.org/10.1016/j.chroma.2016.04.006
  50. L.-H. Zhang, H.-L. Cai, P. Jiang, H.-D. Li, L.-J. Cao, R.-L. Dang, W.-Y. Zhu and Y. Deng, Anal. Methods, 7, 3929-3938 (2015). https://doi.org/10.1039/C5AY00308C
  51. A. Wojnicz, J. Avendano Ortiz, A. I. Casas, A.E. Freitas, M. G. Lopez and A. Ruiz-Nuno, Clin. Chim. Acta, 453, 174-181 (2016). https://doi.org/10.1016/j.cca.2015.12.023
  52. J.-L. Wolfender, G. Marti, A. Thomas and S. Bertrand, J. Chromatogr. A, 1382, 136-164 (2015). https://doi.org/10.1016/j.chroma.2014.10.091
  53. B. Peng, H. Li and X. X. Peng, Protein Cell, 6, 628-637 (2015). https://doi.org/10.1007/s13238-015-0185-x
  54. M. J. Nunes de Paiva, H. C. Menezes and Z. de Lourdes Cardeal, Analyst, 139, 3683-3694 (2014). https://doi.org/10.1039/C4AN00583J
  55. C. Silva, C. Cavaco, R. Perestrelo, J. Pereira and J. S. Camara, Metabolites, 4, 71-97 (2014). https://doi.org/10.3390/metabo4010071
  56. H. Xing, K. Zhang, R. Zhang, Y. Zhang, L. Gu, H. Shi, K. Bi and X. Chen, J. Chromatogr. B, 988, 135-142 (2015). https://doi.org/10.1016/j.jchromb.2015.02.037
  57. L. Zhao, S. Zheng, G. Su, X. Lu, J. Yang, Z. Xiong and C. Wu, J. Chromatogr. B, 988, 59-65 (2015). https://doi.org/10.1016/j.jchromb.2015.02.029
  58. J. Marcos, N. Renau, O. Valverde, G. Aznar-Lain, I. Gracia-Rubio, M. Gonzalez-Sepulveda, L. A. Perez-Jurado, R. Ventura, J. Segura and O. J. Pozo, J. Chromatogr. A, 1434, 91-101 (2016). https://doi.org/10.1016/j.chroma.2016.01.023
  59. J.-M. T. Wong, P. A. Malec, O. S. Mabrouk, J. Ro, M. Dus and R. T. Kennedy, J. Chromatogr. A, 1446, 78-90 (2016). https://doi.org/10.1016/j.chroma.2016.04.006
  60. J. Chen, W. Hou, B. Han, G. Liu, J. Gong, Y. Li, D. Zhong, Q. Liao and Z. Xie, Anal. Bioanal. Chem., 408, 2527-2542 (2016). https://doi.org/10.1007/s00216-016-9352-z
  61. F. Gosetti, E. Mazzucco, M. C. Gennaro and E. Marengo, Anal. Bioanal. Chem., 405, 907-916 (2013). https://doi.org/10.1007/s00216-012-6269-z
  62. K. Sadilkova, K. Dugaw, D. Benjamin and R. M. Jack, Clin. Chim. Acta, 424, 253-257 (2013). https://doi.org/10.1016/j.cca.2013.06.024
  63. P. Husek, Z. Svagera, D. Hanzlikova, L. Oimnaeova, H. Zahradniekova, I. Opekarova and P. Simek, J. Chromatogr. A, 1443, 211-232 (2016). https://doi.org/10.1016/j.chroma.2016.03.019
  64. S. Tufi, M. Lamoree, J. de Boer and P. Leonards, J. Chromatogr. A, 1395, 79-87 (2015). https://doi.org/10.1016/j.chroma.2015.03.056
  65. Y. He, X.-E. Zhao, S. Zhu, N. Wei, J. Sun, Y. Zhou, S. Liu, Z. Liu, G. Chen, Y. Suo and J. You, J. Chromatogr. A, 1458, 70-81 (2016). https://doi.org/10.1016/j.chroma.2016.06.059
  66. L. Zheng, X.-E. Zhao, S. Zhu, Y. Tao, W. Ji, Y. Geng, X. Wang, G. Chen and J. You, J. Chromatogr. B, 1054, 64-72 (2017). https://doi.org/10.1016/j.jchromb.2017.03.039
  67. X.-E. Zhao, Y. He, M. Li, G. Chen, N. Wei, X. Wang, J. Sun, S. Zhu and J. You, J. Pharm. Biomed. Anal., 135, 186-198 (2017). https://doi.org/10.1016/j.jpba.2016.11.056
  68. X. Yang, Y. Hu, G. Li, and Z. Zhang, J. Sep. Sci., 8, 1380-1387 (2015).
  69. H. He, E. Carballo-Jane, X. Tong and L. H. Cohen, J. Chromatogr. B, 997, 154-161 (2015). https://doi.org/10.1016/j.jchromb.2015.05.014
  70. N. Tohmola, O. Itkonen, U. Turpeinen, S. Joenvaara, R. Renkonen and E. Hamalainen, Clin. Chim. Acta, 446, 206-212 (2015). https://doi.org/10.1016/j.cca.2015.03.041
  71. X. Li, S. Li, P. Wynveen, K. Mork and G. Kellermann, Anal. Bioanal. Chem., 406, 7287-7297 (2014). https://doi.org/10.1007/s00216-014-8120-1
  72. F. Schumacher, S. Chakraborty, B. Kleuser, E. Gulbins, T. Schwerdtle, M. Aschner and J. Bornhorst, Talanta, 144, 71-79 (2015). https://doi.org/10.1016/j.talanta.2015.05.057
  73. L. Hao, X. Zhong, T. Greer, H. Ye and L. Li, Analyst, 140, 467-475 (2015). https://doi.org/10.1039/C4AN01582G
  74. W. Y. Hsu, C. M. Chen, F. J. Tsai and C. C. Lai, Clin. Chim. Acta, 420, 140-145 (2013). https://doi.org/10.1016/j.cca.2012.10.022
  75. N. H. Park, J. Y. Hong, H. J. Shin and J. Hong, J. Chromatogr. A, 1305, 234-243 (2013). https://doi.org/10.1016/j.chroma.2013.07.003
  76. M. B. Bhuiyan, F. Murad and M. E. Fant, Cell Commun. Signal., 4, 1-7 (2006). https://doi.org/10.1186/1478-811X-4-1
  77. K. Ofek and H. Soreq, Chem. Biol. Interact., 203, 113-119 (2013). https://doi.org/10.1016/j.cbi.2012.07.007
  78. S. Shenhar-Tsarfaty, S. Berliner, N. M. Bornstein and H. Soreq, J. Mol. Neurosci., 53, 298-305 (2014). https://doi.org/10.1007/s12031-013-0176-4
  79. J. Bergquist, A. Sciubisz, A. Kaczor and J. Silberring, J. Neurosci. Methods, 113, 1-13 (2002). https://doi.org/10.1016/S0165-0270(01)00502-7
  80. M. A. Raggi, C. Sabbioni, G. Nicoletta, R. Mandrioli and G. Gerra, J. Sep. Sci., 26, 1141-1146 (2003). https://doi.org/10.1002/jssc.200301486
  81. M. Tsunoda, C. Aoyama, H. Nomura, T. Toyoda, N. Matsuki and T. Funatsu, J. Pharm. Biomed. Anal., 51, 712-715 (2010). https://doi.org/10.1016/j.jpba.2009.09.045
  82. M.-J. Kim, B.-K. Kim, S. M. Kim, J.-S. Park and J. Hong, Anal. Sci. Technol., 24(5), 319-335 (2011). https://doi.org/10.5806/AST.2011.24.5.319
  83. I. Marin-Valencia, M. Serrano, A. Ormazabal, B. Perez-Dueñas, A. Garcia-Cazorla, J. Campistol and R. Artuch, Clin. Biochem., 41, 1306-1315 (2008). https://doi.org/10.1016/j.clinbiochem.2008.08.077
  84. M. Yoshitake, H. Nohta, H. Yoshida, T. Yoshitake, K. Todoroki and M. Yamaguchi, Anal. Chem., 78, 920-927 (2006). https://doi.org/10.1021/ac051414j
  85. M. A. Fotopoulou and P. C. Ioannou, Anal. Chim. Acta, 462, 179-185 (2002). https://doi.org/10.1016/S0003-2670(02)00312-4
  86. T. G. Rosano, T. A. Swift and L. W. Hayes, Clin. Chem., 37, 1854-1867 (1991).
  87. J. Bicker, A. Fortuna, G. Alves and A. Falcao, Anal. Chim. Acta, 768, 12-34 (2013). https://doi.org/10.1016/j.aca.2012.12.030
  88. H. W. Nam, S.-J. Park, H. S. Pyo and K. J. Paeng, Anal. Sci. Technol., 16(5), 349-357 (2003).
  89. P.-T. Linh, S.-C. Lee, Y.-H. Kim, S.-P. Hong, C.-W. Song and J.-S. Kang, Anal. Sci. Technol., 13(5), 630-635 (2000).
  90. K. Vuorensola and H. Siren, J. Chromatogr. A, 895, 317-327 (2000). https://doi.org/10.1016/S0021-9673(00)00528-8
  91. R. T. Peaston and C. Weinkove, Ann. Clin. Biochem., 41, 17-38 (2004). https://doi.org/10.1258/000456304322664663
  92. K. Vuorensola, J. Kokkonen, H. Siren and R. A. Ketola, Electrophoresis, 22, 4347-4354 (2001). https://doi.org/10.1002/1522-2683(200112)22:20<4347::AID-ELPS4347>3.0.CO;2-J
  93. M. Coen, E. Holmes, J. C. Lindon and J. K. Nicholson, Chem. Res. Toxicol., 21, 9-27 (2008). https://doi.org/10.1021/tx700335d
  94. O. Beckonert, H. C. Keun, T. M. D. Ebbels, J. Bundy, E. Holmes, J. C. Lindon and J. K. Nicholson, Nat. Protoc., 2, 2692-2703 (2007). https://doi.org/10.1038/nprot.2007.376
  95. T. M. Tsang, B. Woodman, G. A. Mcloughlin, J. L. Griffin, S. J. Tabrizi, G. P. Bates and E. Holmes, J. Proteome Res., 5, 483-492 (2006). https://doi.org/10.1021/pr050244o
  96. M. R. Viant, B. G. Lyeth, M. G. Miller and R. F. Berman, NMR Biomed., 18, 507-516 (2005). https://doi.org/10.1002/nbm.980
  97. E. Holmes, T. M. Tsang, J. T. J. Huang, F. M. Leweke, D. Koethe, C. W. Gerth, B. M. Nolden, S. Gross, D. Schreiber, J. K. Nicholson and S. Bahn, PLoS Med., 3, 1420-1428 (2006).
  98. M. P. Quinones and R. Kaddurah-Daouk, Neurobiol. Dis., 35, 165-176 (2009). https://doi.org/10.1016/j.nbd.2009.02.019
  99. K. Dettmer, P. A. Aronov and B. D. Hammock, Mass Spectrom. Rewiews, 26, 51-78 (2007). https://doi.org/10.1002/mas.20108
  100. M. E. Dumas and L. Davidovic, J. Neuroimmune Pharmacol., 10, 402-424 (2015). https://doi.org/10.1007/s11481-014-9578-5
  101. Oliver von Bohle und Halbach and Rolf Dermietzel, Wiley-VCH, Handbook of Receptors and Biological Effects, 2006.
  102. R. Adolfsson, C. G. Gottfries, B. E. Roos and B. Winblad, Br. J. Psychiatry., 135, 216-223 (1979). https://doi.org/10.1192/bjp.135.3.216
  103. L. F. Nolden, T. Tartavoulle and D. J. Porche, J. Nurse Pract., 10, 500-506 (2014). https://doi.org/10.1016/j.nurpra.2014.04.019
  104. E. Sanchez-Lopez, C. Montealegre, A. L. Crego and M. L. Marina, TrAC - Trends Anal. Chem., 67, 82-99 (2015). https://doi.org/10.1016/j.trac.2014.12.008
  105. L. H. Rodan, K. M. Gibson and P. L. Pearl, Pediatr. Neurol., 53, 277-286 (2015). https://doi.org/10.1016/j.pediatrneurol.2015.04.016
  106. J. Soleymani, TrAC - Trends Anal. Chem., 72, 27-44 (2015). https://doi.org/10.1016/j.trac.2015.03.017
  107. I. A. Veselova, E. A. Sergeeva, M. I. Makedonskaya, O. E. Eremina, S. N. Kalmykov and T. N. Shekhovtsova, J. Anal. Chem., 71, 1155-1168 (2016). https://doi.org/10.1134/S1061934816120108
  108. T. Opladen, E. Cortes-Saladelafont, M. Mastrangelo, G. Horvath, R. Pons, E. Lopez-Laso, J. A. Fernandez-Ramos, T. Honzik, T. Pearson, J. Friedman, S. Scholl-Burgi, T. Wassenberg, S. Jung-Klawitter, O. Kuseyri, K. Jeltsch, M. A. Kurian and A. Garcia-Cazorla, Mol. Genet. Metab. Reports, 9, 61-66 (2016). https://doi.org/10.1016/j.ymgmr.2016.09.006
  109. T. Lapainis and J. V. Sweedler, J. Chromatogr. A, 1184, 144-158 (2008). https://doi.org/10.1016/j.chroma.2007.10.098
  110. D. Kondziella, Neurochem. Res., 42, 1767-1771 (2017). https://doi.org/10.1007/s11064-016-2101-z
  111. C. Marecos, J. Ng and M.A. Kurian, J. Inherit. Metab. Dis., 37, 619-626 (2014). https://doi.org/10.1007/s10545-014-9697-4
  112. W. T. Kassahun, Vascular., 23, 297-304 (2015). https://doi.org/10.1177/1708538114543845
  113. Y. Shen, J. Lu, Q. Tang, Q. Guan, Z. Sun, H. Li and L. Cheng, Rapid, J. Chromatogr. B, 1002, 92-97 (2015). https://doi.org/10.1016/j.jchromb.2015.08.013
  114. R. NAE, R. MG and T. JM, JCAR., 33, 53-55 (1982).
  115. T. E. Dicke, M. L. Henry and J. P. Minton, J. Surg. Oncol., 34, 160-164 (1987). https://doi.org/10.1002/jso.2930340305
  116. Z. Wang, Q. Liang, Y. Wang and G. Luo, J. Electroanal. Chem., 540, 129-134 (2003). https://doi.org/10.1016/S0022-0728(02)01300-1
  117. J.-M. Zen, I.-L. Chen and Y. Shih, Anal. Chim. Acta, 369, 103-108 (1998). https://doi.org/10.1016/S0003-2670(98)00232-3
  118. G. Curzon and A.R. Green, Br. J. Pharmacol., 37, 689-697 (1969). https://doi.org/10.1111/j.1476-5381.1969.tb08507.x
  119. W. Wesemann, C. Grote, H. Clement, F. Block and K. Sontag, Prog. Neuropsychopharmacol. Biol. Psychiatry., 17, 487-499 (1993). https://doi.org/10.1016/0278-5846(93)90081-3
  120. M. Karobath, J.-L. Diaz and M. O. Huttunen, Eur. J. Pharmacol., 14, 393-396 (1971). https://doi.org/10.1016/0014-2999(71)90195-6
  121. M. Karobath, Biochem. Pharmacol., 21, 1253-1263 (1972). https://doi.org/10.1016/0006-2952(72)90287-0
  122. M. Hasanzadeh, N. Shadjou and E. Omidinia, J. Neurosci. Methods, 219, 52-60 (2013). https://doi.org/10.1016/j.jneumeth.2013.07.007
  123. K. ER, S. JH and J. TM, Principles of Neural Science, 2000.
  124. R. Rodriguez-Diaz, R. Dando, M. C. Jacques-Silva, A. Fachado, J. Molina, M. H. Abdulreda, C. Ricordi, S. D. Roper, P.-O. Berggren and A. Caicedo, Nat. Med., 17, 888-892 (2011). https://doi.org/10.1038/nm.2371
  125. I. Wessler, C. J. Kirkpatrick and K. Racke, Pharmacol. Ther., 77, 59-79 (1998). https://doi.org/10.1016/S0163-7258(97)00085-5

Acknowledgement

Supported by : 한국연구재단