DOI QR코드

DOI QR Code

Determination of isoquinoline alkaloids by UPLC-ESI-Q-TOF MS: Application to Chelidonium majus L.

  • Jeong, Won Tae (College of Agriculture, Life & Environment Sciences, Chungbuk National University Cheongju) ;
  • Lim, Heung Bin (College of Agriculture, Life & Environment Sciences, Chungbuk National University Cheongju)
  • Received : 2017.10.12
  • Accepted : 2017.12.12
  • Published : 2017.12.25

Abstract

In this study, we set up an analytical method that can be used for rapid and accurate determination of representative isoquinoline alkaloids in medicinal plants using UPLC-ESI-Q-TOF MS (ultra pressure liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry). The compounds were eluted on a C18 column with 0.1 % formic acid and acetonitrile, and separated with good resolution within 13 min. Each of the separated components was characterized by precursor ions (generated by ESI-Q-TOF) and fragment ions (produced by collision-induced dissociation, CID), which were used as a reliable database. We also performed method validation: analytes showed excellent linearity ($R^2$, 0.9971-0.9996), LOD (5-25 ng/mL), LOQ (17-82 ng/mL), accuracy (91.6-97.4 %) as well as intra- and inter-day precisions (RSD, 1.8-3.2 %). In the analysis of Chelidonium majus L., magnoflorine, coptisine, sanguinarine, berberine and palmatine were detected by matching retention times and characteristic fragment ion patterns of reference standards. We also confirmed that, among the quantified components, coptisine was present in the highest quantity. Furthermore, alkaloid profiling was carried out by analyzing the fragment ion patterns corresponding to peaks of unknown components. In this manner, protopine, chelidonine, stylopine, dihydroberberine, canadine, and nitidine were tentatively identified. We also proposed the molecular structure of the fragment ions that appear in the mass spectrum. Therefore, we concluded that our suggested method for the determination of major isoquinoline alkaloids by UPLC-Q-TOF can be useful not only for quality control, but also for rapid and accurate investigation of phytochemical constituents of medicinal plants.

Keywords

UPLC-Q-TOF;Isoquinoline alkaloids;Chelidonium majus L.;Chemical profiling

References

  1. M. Yang, J. Sun, Z. Lu, G. Chen, S. Guan, X. Liu, B. Jiang, M. Ye and D. A. Guo, J. Chromatogr. A, 1216(11), 2045-2062 (2009). https://doi.org/10.1016/j.chroma.2008.08.097
  2. P. J. Facchini, Annu. Rev. Plant Physiol. Plant. Mol. Biol., 52, 29-66 (2001). https://doi.org/10.1146/annurev.arplant.52.1.29
  3. E. Kupeli, M. Kosar, E. Yesilada, K. Husnu and C. Baser, Life Sciences, 72(6), 645-657 (2002). https://doi.org/10.1016/S0024-3205(02)02200-2
  4. J. Yin, J. Ye and W. Jia, Acta. Pharm. Sin. B., 2(4), 327-334 (2012). https://doi.org/10.1016/j.apsb.2012.06.003
  5. Z. Zhang, B. Li, X. Meng, S. Yao, L. Jin, J. Yang, J. Wang, H. Zhang, Z. Zhang, D. Cai, Y. Zhang and G. Ning, Sci. Rep., 6, 20848 (2016). https://doi.org/10.1038/srep20848
  6. L. Chen, H. Tian, M. Li, C. Ge, F. Zhao, L. Zhang, H. Li, J. Liu, T. Wang, M. Yao and J. Li, Tumour Biology : Tumour. Biol., 37(5), 5951-5961 (2016). https://doi.org/10.1007/s13277-015-4362-6
  7. X. Tian, Z. Li, Y. Lin, M. Chen, G. Pan and C. Huang, Anal. Bioanal. Chem., 406(3), 841-849 (2014). https://doi.org/10.1007/s00216-013-7530-9
  8. H. B. Chen, C. D. Luo, J. L. Liang, Z. B. Zhang, G. S. Lin, J. Z. Wu, C. L. Li, L. H. Tan, X. B. Yang, Z. R. Su, J. H. Xie and H. F. Zeng, Eur. Pharmacol., 811, 222-231 (2017). https://doi.org/10.1016/j.ejphar.2017.06.027
  9. F. Ling, Z. Q. Wu, C. Jiang, L. Liu and G. X. Wang, J. Fish. Dis., 39(8), 993-1000 (2016). https://doi.org/10.1111/jfd.12433
  10. P. Weerasinghe, S. Hallock, S. C. Tang, B. Trump and A. Liepins, Experimental and Toxicologic Pathology : Exp. Toxicol. Pathol., 58(1), 21-30 (2006). https://doi.org/10.1016/j.etp.2006.01.008
  11. P. B. Amal K. Maji, International Journal of Herbal Medicine, 3(1), 10-27 (2015). https://doi.org/10.22271/flora.2015.v3.i1.03
  12. L. Kursinszki, A. Sarkozi, A. Kery and E. Szoke, Chromatographia, 63(S13), S131-S135 (2006). https://doi.org/10.1365/s10337-006-0808-8
  13. E.-K. Kim, E.-K. Jeong, S.-B. Han, J.-H. Jung and J.-K. Hong, Bull. Korean. Chem. Soc., 32(10), 3597-3602 (2011). https://doi.org/10.5012/bkcs.2011.32.10.3597
  14. P. Deevanhxay, M. Suzuki, N. Maeshibu, H. Li, K. Tanaka and S. Hirose, J. Pharm. Biomed. Anal., 50(3), 413-425 (2009). https://doi.org/10.1016/j.jpba.2009.05.023
  15. Y. Shen, R. Zhang, R. J. Moore, J. Kim, T. O. Metz, K. K. Hixson, R. Zhao, E. A. Livesay, H. R. Udseth and R. D. Smith, Anal. Chem., 77(10), 3090-3100 (2005). https://doi.org/10.1021/ac0483062
  16. P. M. Le, M. McCooeye and A. Windust, Anal. Bioanal. Chem., 406(6), 1739-1749 (2014). https://doi.org/10.1007/s00216-013-7558-x
  17. M. Sun, J. Liu, C. Lin, L. Miao and L. Lin, Acta. Pharm. Sin. B., 4(3), 208-216 (2014). https://doi.org/10.1016/j.apsb.2014.04.003
  18. Y. Qi, S. Li, Z. Pi, F. Song, N. Lin, S. Liu and Z. Liu, Talanta, 118, 21-29 (2014). https://doi.org/10.1016/j.talanta.2013.09.054
  19. J. H. Lee, J. Y. Choi, H. Park, C. Y. Yoon, S. K. Park, S. Y. Baek and S. Cho, Anal. Methods, 7(18), 7733-7740 (2015). https://doi.org/10.1039/C5AY01316J
  20. A. Kruve, I. Leito and K. Herodes, Anal. Chim. Acta., 651(1), 75-80 (2009). https://doi.org/10.1016/j.aca.2009.07.060
  21. M. Caban, N. Migowska, P. Stepnowski, M. Kwiatkowski and J. Kumirska, J. Chromatogr. A, 1258, 117-127 (2012). https://doi.org/10.1016/j.chroma.2012.08.029
  22. L. V. Perez-Arribas, F. J. Manuel de Villena-Rueda, M. E. Leon-Gonzalez, R. Gonzalo-Lumbreras and L. M. Polo-Diez, Anal. Bioanal. Chem., 396(7), 2647-2656 (2010). https://doi.org/10.1007/s00216-010-3493-2
  23. Q. Xiang, Y. Hashi and Z. Chen, J. Sep. Sci., 39(11), 2036-2042 (2016). https://doi.org/10.1002/jssc.201600042
  24. A. Singh, V. Bajpai, S. Kumar, A. K. Singh Rawat and B. Kumar, J. Pharm. Anal., 7(2), 77-86 (2017). https://doi.org/10.1016/j.jpha.2016.10.002
  25. Y. Gu, D. Qian, J. A. Duan, Z. Wang, J. Guo, Y. Tang and S. Guo, J. Sep. Sci., 33(8), 1004-1009 (2010).
  26. J. Zhou, J. B. Sun, P. Zheng, J. Liu, Z. H. Cheng, P. Zeng and F. Q. Wang, Anal. Bioanal. Chem., 403(7), 1951-1960 (2012). https://doi.org/10.1007/s00216-012-6013-8
  27. A. Panzer, A. M. Joubert, P. C. Bianchi, E. Hamel and J. C. Seegers, Eur. J. Cell. Biol., 80(1), 111-118 (2001). https://doi.org/10.1078/0171-9335-00135
  28. Z. H. Zhang, J. Li, H. J. Zhang, A. J. Deng, L. Q. Wu, Z. H. Li, H. R. Song, W. J. Wang and H. L. Qin, J. Asian. Nat. Prob. Res., 18(6), 576-586 (2016). https://doi.org/10.1080/10286020.2016.1171760
  29. Z. Z. Ma, W. Xu, N. H. Jensen, B. L. Roth, L. Y. Liu-Chen and D. Y. Lee, Molecules., 13(9), 2303-2312 (2008). https://doi.org/10.3390/molecules13092303
  30. R. Suau, B. Cabezudo, R. Rico, F. Najera and J. M. Lopez-Romero, Phytochem. Anal., 13(6), 363-367 (2002). https://doi.org/10.1002/pca.669
  31. S. H. Grimm, G. Hofner and K. T. Wanner, Anal. Bioanal. Chem., 407(2), 471-485 (2015). https://doi.org/10.1007/s00216-014-8312-8
  32. P. Srivastava, G. S. Moorthy, R. Gross and J. S. Barrett, PLoS. ONE., 8(6), e63305 (2013). https://doi.org/10.1371/journal.pone.0063305