DOI QR코드

DOI QR Code

Numerical Investigation of Purcell Enhancement of the Internal Quantum Efficiency of GaN-based Green LED Structures

  • Received : 2017.09.01
  • Accepted : 2017.09.25
  • Published : 2017.12.25

Abstract

GaN-based green light-emitting diode (LED) structures suffer from low internal quantum efficiency (IQE), known as the "green gap" problem. The IQE of LED structures is expected to be improved to some extent by exploiting the Purcell effect. In this study, the Purcell effect on the IQE of green LED structures is investigated numerically using a finite-difference time-domain simulation. The Purcell factor of flip-chip LED structures is found to be more than three times as high as that of epi-up LED structures, which is attributed to the high-reflectance mirror near the active region in the flip-chip LED structures. When the unmodified IQE is 20%, the relative enhancement of IQE can be greater than 50%, without utilizing the surface-plasmon coupling effect. Based on the simulation results, the "green gap" problem of GaN-based green LEDs is expected to be mitigated significantly by optimizing flip-chip LED structures to maximize the Purcell effect.

Acknowledgement

Supported by : Inha University

References

  1. P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nat. Mater. 14, 454-458 (2015). https://doi.org/10.1038/nmat4270
  2. C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, "The efficiency challenge of nitride light-emitting diodes for lighting," Phys. Status Solidi A 212, 899-913 (2015). https://doi.org/10.1002/pssa.201431868
  3. J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, "White light-emitting diodes: History, progress, and future," Laser Photonics Rev. 11, 1600147 (2017). https://doi.org/10.1002/lpor.201600147
  4. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, "White light emitting diodes with super-high luminous efficacy," J. Phys. D: Appl. Phys. 43, 354002 (2010). https://doi.org/10.1088/0022-3727/43/35/354002
  5. M. Peter, A. Laubsch, W. Bergbauer, T. Meyer, M. Sabathil, J. Baur, and B. Hahn, "New developments in green LEDs," Phys. Status Solidi A 206, 1125-1129 (2009). https://doi.org/10.1002/pssa.200880926
  6. S. Saito, R. Hashimoto, J. Hwang, and S. Nunoue, "InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range," Appl. Phys. Express 6, 111004 (2013). https://doi.org/10.7567/APEX.6.111004
  7. M. A. Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. D. Carlo, "Efficiency drop in green InGaN/GaN light emitting diodes: The role of random alloy fluctuations," Phys. Rev. Lett. 116, 027401 (2016). https://doi.org/10.1103/PhysRevLett.116.027401
  8. H. Y. Ryu, D. S. Shin, and J. I. Shim, "Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material," Appl. Phys. Lett. 100, 131109 (2012). https://doi.org/10.1063/1.3698113
  9. H. Y. Ryu, G. H. Ryu, Y. H. Choi, and B. J. Ma, "Modeling and simulation of efficiency droop in GaN-based blue light-emitting diodes incorporating the effect of reduced active volume of InGaN quantum wells," Curr. Appl. Phys. 17, 1298-1302 (2017). https://doi.org/10.1016/j.cap.2017.06.014
  10. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  11. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004). https://doi.org/10.1038/nmat1198
  12. C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, G. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, "Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering," Opt. Express 22, A842- A856 (2014). https://doi.org/10.1364/OE.22.00A842
  13. K. G. Lee, K. Y. Choi, J. H. Kim, and S. H. Song, "Experimental observation of electroluminescence enhancement on green LEDs mediated by surface plasmons," Opt. Express 22, A1303-A1309 (2014). https://doi.org/10.1364/OE.22.0A1303
  14. K. Tateishi, M. Funato, Y. Kawakami, K. Okamoto, and K. Tamada, "Highly enhanced green emission from InGaN quantum wells due to surface plasmon resonance on aluminum films," Appl. Phys. Lett. 106, 121112 (2015). https://doi.org/10.1063/1.4916392
  15. C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, "Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure," Appl. Phys. Lett. 89, 203113 (2006). https://doi.org/10.1063/1.2390639
  16. G. Sun, J. B. Khurgin, and R. A. Soref, "Practical enhancement of spontaneous emission using surface plasmons," Appl. Phys. Let. 90, 111107 (2007). https://doi.org/10.1063/1.2539745
  17. C. F. Chu, C. C. Cheng, W. H. Liu, J. Y. Chu, F. H. Fan, H. C. Cheng, T. Doan, and C. A. Tran, "High brightness GaN vertical light-emitting diodes on metal alloy for general lighting application," Proc. IEEE 98, 1197-1207 (2010). https://doi.org/10.1109/JPROC.2009.2037026
  18. A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, "High-power and high-efficiency InGaN-based light emitters," IEEE Trans. Electron Devices 57, 79-87 (2010). https://doi.org/10.1109/TED.2009.2035538
  19. C. G. Song, Y. J. Cha, S. K. Oh, J. S. Kwak, H. J. Park, and T. Jeong, "Optimized via-hole structure in GaN-based vertical-injection light-emitting diodes," J. Korean Phys. Soc. 68, 159-163 (2016). https://doi.org/10.3938/jkps.68.159
  20. H. Morawitz, "Self-coupling of a two-level system by a mirror," Phys. Rev. 187, 1792 (1969). https://doi.org/10.1103/PhysRev.187.1792
  21. R. M. Amos and W. L. Barnes, "Modification of the spontaneous emission rate of Eu 31 ions close to a thin metal mirror," Phys. Rev. B 55, 7249-7254 (1997). https://doi.org/10.1103/PhysRevB.55.7249
  22. H. Y. Ryu, "Modification of internal quantum efficiency and efficiency droop in GaN-based flip-chip light-emitting diodes via the Purcell effect," Opt. Express 23, A1157-A1166 (2015). https://doi.org/10.1364/OE.23.0A1157
  23. Y. Xu, J. Vuckovic, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity," J. Opt. Soc. Am. B 16, 465-474 (1999). https://doi.org/10.1364/JOSAB.16.000465
  24. J. K. Hwang, H. Y. Ryu, and Y. H. Lee, "Spontaneous emission rate of an electric dipole in a general microcavity," Phys. Rev. B 60, 4688-4695 (1999). https://doi.org/10.1103/PhysRevB.60.4688
  25. M. Nami and D. F. Feezell, "Optical properties of plasmonic light-emitting diodes based on flip-chip III-nitride core-shell nanowires," Opt. Express 22, 29445-29455 (2014). https://doi.org/10.1364/OE.22.029445
  26. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Inc., 1995).
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).