DOI QR코드

DOI QR Code

Synthesis and Characterization of Fluorinated Polybenzimidazole Proton Exchange Membranes for Fuel Cell

연료전지용 불소화 폴리벤즈이미다졸 양성자 교환 멤브레인 합성 및 특성평가

  • Received : 2017.01.31
  • Accepted : 2017.02.28
  • Published : 2017.02.28

Abstract

A fluorinated polybenzimidazole (FPBI) was synthesized from 3,3-diaminobenzidine (DAB) of tetraamine, 2,2-bis(4-carboxyphenyl)hexafluoropropane of aromatic biscarboxylic acid, and 4,4-sulfonyldibenzoic acid of aromatic biscarboxylic acid in polyphosphoric acid (PPA). A FPBI was easily cast and made into clear films. The structure of condensation polymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (fourier transform infrared). TGA (thermogravimetric analysis) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. The proton conductivity of the FPBI membranes increased with increasing temperatures in the polymer. A FPBI membrane has a maximum ion conductivity of 45 mS/cm at $90^{\circ}C$ and 100% relative humidity.

Acknowledgement

Supported by : 중소기업청

References

  1. C. Heitner-Wirguin, "Recent advances in perfluorinated ionomer membranes: structure, properties and applications", J. Membr. Sci., 120, 1996, pp. 1-33. https://doi.org/10.1016/0376-7388(96)00155-X
  2. K. A. Mauritz, R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 2004, pp. 4535-4586. https://doi.org/10.1021/cr0207123
  3. V. Ramani, H. R. Kunz, J. M. Fenton, "Investigation of nafion/HPA composite membrnaes for high temperature/ low relative humidity PEMFC operation", J. Membr. Sci., 232, 2004, pp. 31-44. https://doi.org/10.1016/j.memsci.2003.11.016
  4. Q. Li, R. He, Q. O. Jensen, N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100^{\circ}C$", Chem. Mater, 15, 2003, pp. 4896-4915. https://doi.org/10.1021/cm0310519
  5. J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 2001, pp. 3-27. https://doi.org/10.1016/S0376-7388(00)00631-1
  6. M. Rikukawa, K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers", Prog. Polym. Sci., 25, 2000, pp. 1463-1502. https://doi.org/10.1016/S0079-6700(00)00032-0
  7. Y. Woo, S. Y. Oh, Y. S. Kang, B.S. Jung, "Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell", J. Membr. Sci., 220, 2003, pp. 31-45. https://doi.org/10.1016/S0376-7388(03)00185-6
  8. C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, "Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium", Polymer, 42, 2001, pp. 5097-5105. https://doi.org/10.1016/S0032-3861(00)00645-5
  9. F. Lufrano, I. Gatto, P. Staiti, V. Antonucci, E. Passalacqua, "Sulfonated polysulfone ionomer membranes for fuel cells", Solid State Ionics, 145, 2001. pp. 47--51 https://doi.org/10.1016/S0167-2738(01)00912-2
  10. Y. Gao, G.P. Robertson, M.D. Guiver, X.G. Jian, "Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials", J. Polym. Sci., Part A, Polym. Chem., 41, 2003, pp. 497-507. https://doi.org/10.1002/pola.10601
  11. Y.J. Liu, X.G. Jian, S.J. Liu, "Synthesis and properties of novel poly(phthalazinone ether ketone ketone)", J. Appl. Polym. Sci., 82, 2001, pp. 823-826. https://doi.org/10.1002/app.1912
  12. L. Xiao, H. Zhang, T.Jana, E.Scanlon, R.Chen, E-W. Choe, L.S. Ramanathan, S.Yu, B.C. Benicewicz, "Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications", B. C. Fuel Cells, 5, 2005, pp. 287-295. https://doi.org/10.1002/fuce.200400067
  13. H. J. Kim, S. J. An, J. Y. Kim, J. K. Moon, S. Y. Cho, Y. C. Eun, H. K. Yoon, Y. M. Park, H. J. Kweon, E. M. Shin, "Polybenzimidazoles for high temperature fuel cell applications", E. M. Macromol Rapid Commun, 25, 2004, pp. 1410-1413. https://doi.org/10.1002/marc.200400167
  14. S. W. Chuang, S. L. C. HSU, "Synthesis and properties of a new fluorine-containing polybenzimidazole for high- temperature fuel-cell applications", J. of Polym. Sci., Part A, Polym. Chem., 44, 15, 2006, pp. 4508-4513 https://doi.org/10.1002/pola.21555
  15. R. F. Hutzler, D. L. Meurer, K. Kimura, P. E. Cassidy, "Synthesis and chacaterization of polybenzazoles containing hexafluoroisopropyl idene", High perform. polym., 4, 1992, pp. 161-171. https://doi.org/10.1088/0954-0083/4/3/004
  16. Y. Suegusa, M. Horikiri, S. Nakurnura, "Aromatic polybenzimidazoles from 4,4''- (hexafluoroisopropy1idene)dibenzoic acid and aromatic tetramine tetrahydrochlorides", Macromol. Chem. Phvs., 198, 1997, pp. 619-625. https://doi.org/10.1002/macp.1997.021980233
  17. G. Kumar, A. R. Kim, K. S. Nahm, D. J. Yoo, R. Elizabeth, "High ion and lower molecualr transportation of the poly vinylidene fluoride-hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications", J. Power Sources, 195, 2010, pp. 5922-5928. https://doi.org/10.1016/j.jpowsour.2009.11.021
  18. D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar and K. S. Nahm, "Novel sulfonated poly (arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenylmoiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., 60, 2011, pp. 80-92.
  19. A. R. Kim, "Synthesis and characterization of di and triblock copolymers containing a naphthalene unit for polymer electrolyte membranes", Trans. of the Korean Hydrogen and New Energy society, 27, 6, 2016, pp. 660-669. https://doi.org/10.7316/KHNES.2016.27.6.660
  20. A. R. Kim, M. Vinothkannan, D. J. Yoo, "Sulfonated-fluorinated copolymer blending membranes containing SPEEK for use as the electrolyte in polymer electrolyte fuel cells (PEFC)", Int. J. Hydrogen Energy, In press, corrected proof, available online 18 december 2016. DOI: 10.1016/j.ijhydene.2016.11.161.