DOI QR코드

DOI QR Code

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed (Sino-French International Joint Laboratory of Automatic Control and Signal Processing (LaFCAS), Automation School, Nanjing University of Science & Technology) ;
  • WANG, Haoping (Sino-French International Joint Laboratory of Automatic Control and Signal Processing (LaFCAS), Automation School, Nanjing University of Science & Technology)
  • Received : 2016.01.18
  • Accepted : 2017.12.14
  • Published : 2017.12.30

Abstract

This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province

References

  1. Mattei, G. and Monaco, S., "Nonlinear Autopilot Design for an Asymmetric Missile Using Robust Backstepping Control", Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014, pp. 1462-1476. DOI:10.2514/1.G000434 https://doi.org/10.2514/1.G000434
  2. Yang, J., Chen, W. H. and Li, S., "Non-Linear Disturbance Observer-Based Robust Control for Systems with Mismatched Disturbances/Uncertainties", IET Control Theory & Applications, Vol. 5, No. 18, 2011, pp. 2053-2062. DOI:10.1049/iet-cta.2010.0616 https://doi.org/10.1049/iet-cta.2010.0616
  3. Lee, Y., Kim, Y., Moon, G. and Jun, B. E., "Sliding Mode Based Attitude and Acceleration Controller for a Velocity- Varying Skid-to-Turn Missile", 2014 European Control Conference (ECC),. IEEE, 2014, pp. 2951-2956. DOI:10.1109/ECC.2014.6862251
  4. Zarchan, P., Tactical and Strategic Missile Guidance, Progress in Astronautics and Aeronautics, 2002, pp. xxi, 507-527.
  5. Roshanian, J., Hashemi, S. and Mehrabian, A., "Optimal Gain-Scheduled Flight Control System Design Using a New Fuzzy Clustering Algorithm", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 223, No. 1, 2009, pp. 69-81. DOI:10.1243/09544100JAERO345 https://doi.org/10.1243/09544100JAERO345
  6. Ryu, S. M., Won, D. Y., Lee, C. H. and Tahk, M. J., "Missile Autopilot Design for Agile Turn Control During Boost-Phase", International Journal of Aeronautical and Space Sciences, Vol. 12, No. 4, 2011, pp. 365-370. DOI:10.5139/IJASS.2011.12.4.365 https://doi.org/10.5139/IJASS.2011.12.4.365
  7. Mahmood, A., Kim, Y. and Park, J., "Robust $H{\infty}$ Autopilot Design for Agile Missile with Time-Varying Parameters", IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 4, 2014, pp. 3082-3089. DOI:10.1109/TAES.2014.130750 https://doi.org/10.1109/TAES.2014.130750
  8. Xianxiang, C., Jianmei, S. and Gaohua, C., "Robust Gain-Scheduled Autopilot Design with LPV Reference Model for Portable Missile", 2012 IEEE Aerospace Conference, IEEE, 2012, pp. 1-10. DOI:10.1109/AERO.2012.6187214
  9. Schumacher, C. and Khargonekar, P. P., "Stability Analysis of a Missile Control System with a Dynamic Inversion Controller", Journal of Guidance, Control, and Dynamics, Vol. 21, No. 3, 1998, pp. 508-515. DOI:10.2514/2.4266 https://doi.org/10.2514/2.4266
  10. Devaud, E., Siguerdidjane, H. and Font, S., "Some Control Strategies for a High-Angle-of-Attack Missile Autopilot", Control Engineering Practice, Vol. 8, No. 8, 2000, pp. 885-892. DOI:10.1016/S0967-0661(00)00013-7 https://doi.org/10.1016/S0967-0661(00)00013-7
  11. van Oort, E., Sonneveldt, L., Chu, Q. P. and Mulder, J., "Modular Adaptive Input-to-State Stable Backstepping of a Nonlinear Missile Model", AIAA Guidance, Navigation and Control Conference and Exhibit, 2007, pp. 6676. DOI:10.2514/6.2007-6676
  12. Cao, C. and Hovakimyan, N., "L1 Adaptive Output-Feedback Controller for Non-Strictly-Positive-Real Reference Systems: Missile Longitudinal Autopilot Design", Journal of Guidance, Control, and Dynamics, Vol. 32, No. 3, 2009, pp. 717-726. DOI:10.2514/1.40877 https://doi.org/10.2514/1.40877
  13. Shao-ming, H. and De-fu, L., "Missile Two-Loop Acceleration Autopilot Design Based on L 1 Adaptive Output Feedback Control", International Journal of Aeronautical and Space Sciences, Vol. 15, No. 1, 2014, pp. 74-81. DOI:10.5139/IJASS.2014.15.1.74 https://doi.org/10.5139/IJASS.2014.15.1.74
  14. Rusnak, I., Weiss, H. and Barkana, I., "Improving the Performance of Existing Missile Autopilot Using Simple Adaptive Control", International Journal of Adaptive Control and Signal Processing, Vol. 28, No. 7-8, 2014, pp. 732-749. DOI:10.1002/acs.2457 https://doi.org/10.1002/acs.2457
  15. Pal, N., Kumar, R. and Kumar, M., "Design of Missile Autopilot Using Backstepping Controller", 2014 International Conference on Electronics, Communication and Instrumentation (ICECI), IEEE, 2014, pp. 1-4. DOI:10.1109/ICECI.2014.6917606
  16. Lee, K. W. and Singh, S. N., "Immersion-and Invariance-Based Adaptive Missile Control Using Filtered Signals", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2011, pp. 0954410011414993. DOI:10.1177/0954410011414993
  17. Li, T., Zhang, S., Yang, H., Zhang, Y. and Zhang, L., "Robust Missile Longitudinal Autopilot Design Based on Equivalent-Input-Disturbance and Generalized Extended State Observer Approach", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 229, No. 6, 2015, pp. 1025-1042. DOI:10.1177/0954410014543715 https://doi.org/10.1177/0954410014543715
  18. Han, K., Sung, J. and Kim, B., "Application of an Adaptive Autopilot Design and Stability Analysis to an Anti-Ship Missile", International Journal of Aeronautical and Space Sciences, Vol. 12, No. 1, 2011, pp. 78-83. DOI:10.5139/IJASS.2011.12.1.78 https://doi.org/10.5139/IJASS.2011.12.1.78
  19. Cimen, T., "A Generic Approach to Missile Autopilot Design Using Statedependent Nonlinear Control", 18th IFAC World Congress, Vol. 2011, 2011, pp. 9587-9600. DOI:10.3182/20110828-6-IT-1002.03744
  20. Hull, R. and Qu, Z., "Dynamic Robust Recursive Control Design and its Application to a Nonlinear Missile Autopilot", Proceedings of the 1997 American Control Conference, IEEE, Vol. 1, 1997, pp. 833-837. DOI:10.1109/ACC.1997.611921
  21. Lee, C. H., Kim, T. H. and Tahk, M. J., "Missile Autopilot Design for Agile Turn Using Time Delay Control with Nonlinear Observer", International Journal of Aeronautical and Space Sciences, Vol. 12, No. 3, 2011, pp. 266-273. DOI:10.5139/IJASS.2011.12.3.266 https://doi.org/10.5139/IJASS.2011.12.3.266
  22. Park, B. G., Kim, T. H. and Tahk, M. J., "Time-Delay Control for Integrated Missile Guidance and Control", International Journal of Aeronautical and Space Sciences, Vol. 12, No. 3, 2011, pp. 260-265. DOI:10.5139/IJASS.2011.12.3.260 https://doi.org/10.5139/IJASS.2011.12.3.260
  23. Thukral, A. and Innocenti, M., "A sliding Mode Missile Pitch Autopilot Synthesis for High Angle of Attack Maneuvering", IEEE Transactions on Control Systems Technology, Vol. 6, No. 3, 1998, pp. 359-371. DOI:10.1109/87.668037 https://doi.org/10.1109/87.668037
  24. Won, D., Tahk, M., Kim, Y. and Kim, H., "Multi-Model Approaches to Three-Axis Missile Autopilot Design Under Aerodynamic Roll Angle Uncertainty", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 226, No. 9, 2012, pp. 1061-1077. DOI:10.1177/0954410011418751 https://doi.org/10.1177/0954410011418751
  25. Kang, S., Kim, H. J., Lee, J. I., Jun, B. E. and Tahk, M. J., "Roll-Pitch-Yaw Integrated Robust Autopilot Design for a High Angle-of-Attack Missile", Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, 2009, pp. 1622-1628. DOI:10.2514/1.39812 https://doi.org/10.2514/1.39812
  26. Devaud, E., Harcaut, J. P. and Siguerdidjane, H., "Three-Axes Missile Autopilot Design: from Linear to Nonlinear Control Strategies", Journal of Guidance, Control, and Dynamics, Vol. 24, No. 1, 2001, pp. 64-71. DOI:10.1016/S0967-0661(00)00013-7 https://doi.org/10.2514/2.4676
  27. Siouris, G. M., Missile Guidance and Control Systems, Springer-Verlag, New York, Inc., 2004, pp. 15-84.
  28. Garnell, P. and East, D. J., Guided Weapon Control Systems, 2nd ed., Pergamon Precs, New York, 1980, pp.61-115.
  29. Liu, J. and Wang, X., Advanced Sliding Mode Control for Mechanical Systems, Springer, 2012, pp. 31-35.
  30. Yu, X. and Kaynak, O., "Sliding-Mode Control with Soft Computing: A Survey", IEEE Transactions on Industrial Electronics, Vol. 56, No. 9, 2009, pp. 3275-3285. DOI:10.1109/TIE.2009.2027531 https://doi.org/10.1109/TIE.2009.2027531
  31. Awad, A. and Wang, H.P., "Roll-Pitch-Yaw Autopilot Design for Nonlinear Time-Varying Missile Using Partial State Observer Based Global Fast Terminal Sliding Mode Control", Chinese Journal of Aeronautics, Vol. 29, No. 1, 2016, pp. 1302-1312. DOI:10.1016/J.CJA.2016.04.020 https://doi.org/10.1016/j.cja.2016.04.020

Cited by

  1. Robust Stabilization Technique for the Leader Steering Slung-Load System/Using Sliding Mode Control pp.2093-2480, 2018, https://doi.org/10.1007/s42405-018-0053-z